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X-chromosome short tandem repeat (X-STR) tools are crucial in forensic genetics and human population fields. This study
presents the development and validation of a multiplex STR system consisting of thirteen X-STR loci and amelogenin specific
to the human X chromosome. The system was optimized and tested for species specificity, sensitivity, stability, and DNA
mixture using 9947A female and 9948 male control genomic DNA. The amplified products of nine loci were sequenced to
determine the correct amplicon length. Allele frequencies, forensic parameters, mean exclusion chance (MEC), linkage
disequilibrium (LD), and allelic patterns were investigated using DNA samples from 225 (159 male, 66 female) unrelated
Kurdish individuals who live in Sulaymaniyah province in the Kurdistan region of Iraq. The most informative locus in the
Kurdish population was GATA172D05, while the least informative locus was DXS10164. The results demonstrated that the 13
X-STR system is highly polymorphic and sensitive for forensic DNA identification. Genetic distance-based clustering, metric
multidimensional scaling (MDS), and correlation matrix were analyzed for 19 ethnic groups and populations. The phylogenetic
tree showed that populations clustered according to their ethnogeographic relationships. The findings revealed genetic links
between the Iraqi Kurds, Caucasians, Iraqi Arabs, United States (U.S.) ethnic groups, and Chinese populations.

1. Introduction

Short tandem repeat (STR) markers are specific regions on
nuclear DNA that are highly polymorphic and used in
forensic genetics to discriminate between DNA samples [1,
2]. In addition, many autosomal STR loci that have been rec-
ommended by the forensic community worldwide are ideal
for paternity testing and human identifications [2, 3]. Never-
theless, using STRs from the sex chromosomes (X and Y)
can also be valuable. The application of X-STRs plays an
important role, particularly in complex cases where the anal-
ysis of autosomal loci is not informative [4, 5]. For example,
the case of suspected half-sisters could be resolved by X-STR
analysis as fathers will always pass on their single copy of the
X chromosome to their daughters [6]. Moreover, because X
chromosome STRs are polymorphic and easy to analyze,
they are often used in population studies to evaluate the
standard and rare alleles from a given population [6, 7]. In

this work, a new reliable multiplex polymerase chain reaction
(PCR) tool was developed and validated according to the Scien-
tific Working Group on DNA Analysis Methods (SWGDAM)
Validation Guidelines for DNA Analysis Methods [8]. This
system can amplify 14 markers, including 13 STR loci on the
human X chromosome (DXS9902, DXS10164, DXS7130,
DXS7423, DXS8378, GATA172D05, DXS9898, DXS7424,
GATA31E08, DXS6795, DXS981 (STRX1), DXS7132, and
GATA144D04) and amelogenin for gender identification. This
system was used to obtain genetic databases for population and
forensic purposes and to further understand the genetic land-
scape of the Kurdish population in northern Iraq.

2. Materials and Methods

2.1. Primer Design. Primer pairs for 13 X-STR loci (DXS9902,
DXS10164, DXS7130, DXS7423, DXS8378, GATA172D05,
DXS9898, DXS7424, GATA31E08, DXS6795, DXS981
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(STRX1), DXS7132, and GATA144D04) were designed using
the publicly available software Primer3web version 4.1.0
(https://primer3.ut.ee/). A commonly used primer set for
amelogenin, first published by Sullivan et al. [9], was used
for gender identification. The primers were further checked
for specificity using the National Center for Biotechnology
Information (NCBI) (https://blast.ncbi.nlm.nih.gov/Blast.cgi).
Unlabeled and labeled primer pairs were synthesized by the
Microsynth AG company (Microsynth, Switzerland), and the
forward primer of each labeled pair was fluorescently tagged
at the 5′ end (FAM, ATTO532, ATTO550, or ATTO565) for
the analysis by capillary electrophoresis. The primer details,
fragment size, cytogenetic localization, and repeat motif are
shown in Table 1.

Spectral calibration for Microsynth’s dyes was performed
using the Microsynth Matrix Standard (Mic-G5-Matrix-Std),
which contains a mixture of five DNA fragments labeled with
FAM, ATTO532, ATTO550, ATTO565, and Dyomics 630.

2.2. Sample Preparation. The work performed in this manu-
script is part of a project approved by the Ethics Committee
of the Kurdistan Institution for Strategic Studies and Scien-
tific Research (KISSR). Buccal swab samples were collected
with written informed consent from 225 healthy (66 female
and 159 male) unrelated Kurds aged 18 and older from
Sulaymaniyah province. Genomic DNA was extracted using
the AddPrep Genomic DNA Extraction Kit (Add Bio,
Korea) according to the manufacturer’s protocol. Genomic
DNA 9947A female (Qiagen, Germany) and 9948 male
genomic DNA (MCLAB, USA) with known X-STR geno-
types were purchased to be used as positive control. Purified
DNA with numerical abnormalities was studied to evaluate
the peak height ratio. The purity and concentration of
DNA were determined using an Eppendorf Biophotometer
Plus (Eppendorf, Germany).

2.3. PCR Condition and Sequencing. PCR conditions for the
multiplex amplification were evaluated using gradient PCR
with annealing temperatures of 55, 56, 57, 58, 59, and 60°C
and the number of PCR cycles (26–30). All tests were based
on 1ng of 9948 control genomic DNA.

Multiplex PCR was carried out using Platinum® Multi-
plex PCR Master Mix (10μl) mixed with 1μl of DNA tem-
plate, 6μl of the optimized primer mix (0.1 pmol), and 3μl
of nuclease-free water to the volume of 20μl. Multiplex
PCR amplification was performed using the following
parameters: stage 1, activation of Platinum® Multiplex PCR
Master Mix 95°C for 2min; stage 2 (28 cycles), denaturation
95°C for 30 s, annealing 57°C for 60 s, and extension 72°C for
30 s; and stage 3, final extension 60°C for 30min. The PCR
amplification was performed using a Veriti® 96-Well Thermal
Cycler (Applied Biosystems). The products were analyzed by
capillary electrophoresis using the optimized analysis parame-
ters for the ABI 3500 Prism® Genetic Analyzer. GeneScan 600
LIZ Size Standard v2.0 and Size-500 Plus were used as internal
size standards for sizing DNA fragments.

PCR products were used for sequencing analysis. The
samples were sequenced by Microsynth Seqlab GmbH (Micro-
synth, Germany) and Macrogen Inc. company (Macrogen,

South Korea); the same PCR parameters described above were
used with unlabeled primer pairs.

2.4. Species Specificity. Species specificity study was per-
formed using DNA from nonhuman samples from common
domestic animals (chicken, duck, pig, rabbit, and sheep) to
evaluate the ability to detect genetic information from non-
human biological samples. The extracted DNA amount of
2 ng was used with the 13 X-STR loci, and genomic male
DNA 9948 (1 ng) was amplified as a positive control.

2.5. Sensitivity and Stability. A sensitivity study was con-
ducted using serial dilutions of 9948 control genomic DNA
to evaluate the minimum amount of DNA required to obtain
reliable results. Amplification of control DNA was carried
out in triplicate with the following quantities: 2.5, 1.25, 0.6,
0.3, 0.1, and 0.05 ng in a final volume of 20μl using the opti-
mal PCR parameters.

The stability study was conducted by adding different
concentrations of three common types of PCR inhibitors:
ethanol, isopropanol, and ethylenediaminetetraacetic acid
(EDTA). The control DNA template was 1 ng, and the inhib-
itor concentrations were as follows: 9.6, 4.8, 2.4, 1.2, and
0.6% ethanol; 9.9, 4.9, 2.4, 1.2, and 0.6% isopropanol; and
5, 2.5, 1.25, 0.625, 0.31, and 0.15mM EDTA in a final PCR
volume of 20μl.

2.6. Mixture Study. Female 9947A and male 9948 DNA sam-
ples were prepared in triplicates at 1 : 1, 2 : 1, and 1 : 2 ratios
to evaluate the performance of the in-house tool for DNA
mixture detection. The total amount of DNA was 0.5 ng in
a final volume of 20μl of the PCR.

Extracted DNA from female and male samples were
quantified using Eppendorf Biophotometer Plus. Female-
male mixtures at different ratios (1 : 1, 3 : 1, 5 : 1, 8 : 1, 1 : 3,
1 : 5, and 1 : 8) were prepared and amplified in triplicates
using 1ng in the final volume of 20μl of PCR.

2.7. Data Analysis. The allele frequencies of the 13 X-STR
loci for the female and male data were calculated using
StatsX v2.0 [10]. Allelic patterns were calculated using
genetic analysis in Excel (GenAIEx 6.5) [11]. The linkage
disequilibrium (LD) and forensic statistical parameters,
including gene diversity (GD), polymorphism information
content (PIC), power of discrimination (PD), and match
probability (PM), were calculated using the online tool
STR Analysis for Forensics (STRAF 2.1.5) [12]. The com-
bined PD, male and female, and mean exclusion chance
(MECKruger, MECKishida, MECDesmarais, and MECDesmarais duo)
were calculated according to Hauston [13] using the StatsX
v2.0. The sequence data were viewed and analyzed using
Chromas (version 2.6.6) DNA sequence analysis software.
The phylogenetic tree was constructed from allele frequency
using POPTREE2 software [14] and visualized by an Interac-
tive Tree Of Life (iTOL) v5 [15]. The tree was performed based
on data from seven loci of 19 populations using neighbor-
joining phylogeny and fixation index (FST (uncorrected))
distance. The metric multidimensional scaling plot (MDS)
was generated using FST values by Kamakura’s Analytic Tools
for Excel [16]. The correlation matrix was used to investigate
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genetic comparisons between the populations based on FST
values using the R statistical software version 4.3.2 and
RStudio [17, 18].

3. Results

3.1. Multiplex Design. Thirteen X-STR and amelogenin were
selected based on the following criteria: (1) their locations to
cover the entire X chromosome (Figure S1), four loci are on
the short arm of the X chromosome (DXS8378, DXS9902,
DXS6795, and GATA144D04), two loci are on the centromere
(DXS10164 and DXS7132), and seven loci are on the long
arm (DXS981, DXS9898, DXS7424, GATA172D05, DXS7130,
GATA31E08, and DXS7423); (2) the loci that are with high
polymorphisms were selected; (3) suitable for designing
multiplex primers with amplicon sizes below 340bp; and (4)
spaces between the markers on the same dye channel.

PCR conditions, gradient PCR (55–60°C), and number of
cycles (26–30) were used to evaluate the reaction conditions
(Figure S2). The 13 X-STR loci and amelogenin were
successfully optimized and amplified in a single PCR. The
amplification of the in-house X-STR loci was set up using the
annealing temperature of 57°C and 28 cycles. Allele
designations (bins and panels) were created by comparing the
female 9947A and the male 9948 genomic control DNA
(Table S1). Electropherograms of the DNA profiles are shown
in Figures S3 and S4. The PCR products of 9 loci (DXS6795,
DXS7130, DXS7424, GATA172D05, GATA31E08, DXS10164,
DXS9898, DXS981, and DXS9902) were sequenced to confirm
the exact length of the amplicons using different male DNA
templates (Figure S5).

3.2. Sensitivity and Stability. Different concentrations of DNA
(9948 male) ranging from 2.5 to 0.05ng were amplified to
determine the minimum amount of DNA sample from which
a complete profile can be generated (Figure S6). The optimal
amount of DNA required to obtain a reliable profile was
1ng using 28 PCR cycles. However, satisfactory results were
obtained using a DNA amount of 0.125ng without
increasing the PCR cycles (Figure S7). Allele dropouts of
DXS7130, DXS8378, DXS9898, and DXS981 were observed
at 0.05ng of DNA.

The stability test was performed using different concen-
trations of three inhibitory substances (ethanol, isopropanol,
and EDTA). The results revealed that complete DNA pro-
files were obtained from 1ng of 9948 DNA samples until
up to 1.25% ethanol and isopropanol and 0.625mM EDTA
in the final 20μl PCR volume. Allele dropouts were observed
at higher concentrations of 2.4% ethanol and isopropanol
and 1.25mM EDTA. The entire amplification failure was
obtained when the concentrations increased to ethanol
(4.8%), isopropanol (4.9%), and EDTA (2.5mM) in the final
reaction volume (Figure S8).

3.3. Species Specificity. The species specificity test was per-
formed using DNA extracted from five different animals:
chicken, duck, pig, rabbit, and sheep. The results showed
no specific peaks at all loci were observed (Figure S9). This

result demonstrated that the 13 X-STR tool is suitable for
human identity testing.

3.4. Mixture Study. Mixtures arise when two or more DNA
sources contribute to a single sample. Therefore, female-
male DNA mixtures at different ratios, 9947A female and
9948 male (1 : 1, 2 : 1, and 1 : 2), extracted DNA female-
male (1 : 1, 3 : 1, 5 : 1, 8 : 1, 1 : 3, 1 : 5, and 1 : 8) were studied
(Figure S11). The results revealed no allele dropout at 2 : 1
and 1 : 2 of control DNA mixtures. In addition, DNA
mixtures of the purified samples were identified even at
1 : 8 and 8 : 1 ratios; however, the height of the peaks was
proportional to the amount of DNA. Increasing the PCR
cycles and the amount of DNA might improve the
sensitivity of detecting the mixture samples. The results
suggested that the 13 X-STR tool was suitable for detecting
DNA mixture samples with two individuals.

3.5. Peak Height Ratio. DNA samples with numerical abnor-
malities on the X chromosome (X0, XXY, and XXX) were ana-
lyzed; chromosomal anomalies were confirmed in these
samples using commercial kits. Turner syndrome, also called
45, X0, is when females with this disorder have 45 chromo-
somes instead of 46; they lack one X chromosome. Klinefelter
syndrome, also known as 47, XXY, is whenmales with this dis-
order have one extra copy of the X chromosome. Triple X syn-
drome, also called trisomyX syndrome, is when females in this
condition inherit an extra X chromosome. The peak height
ratio was calculated by dividing the peak height of a lower rel-
ative fluorescence unit (RFU) value by the peak height of a
higher RFU value. The results, shown in Figure S10, revealed
imbalanced peak heights with an average ratio of less than
70% at eight loci and one triallelic locus (DXS7130) in the
triple X sample. Seven loci were biallelic and imbalanced X,
Y amelogenin with a peak height ratio of less than 60%
(52.6%) in the XXY sample, and monosomy in the X0
sample was obtained. The results demonstrated that the 13
X-STR loci could distinguish between monosomic and
trisomic states of the X chromosome, indicating that this
method is reliable for diagnosing sex aneuploidies.

3.6. Allele Frequency and Forensic Parameter. Based on the
13 X-STR loci, the X chromosome data were analyzed in the
Kurdish population samples, males and females, from Sulay-
maniyah province in northern Iraq. The results can be found
in Supplementary Tables S2 and S3. Allelic frequencies for
male, female, and pool samples were calculated, and the
results are shown in Table S4. The distribution plots of the
pool allele frequencies are presented in Figure 1.

Forensic statistical parameters were calculated using the
STRAF online tool. The results showed that the highest PIC
and GD were observed at the GATA172D05 locus in the
female (PIC = 0 7891, GD= 0 8218) and male (PIC = 0 7878,
GD = 0 8185) samples. The lowest PIC and GD were found
at the DXS10164 locus in the female (PIC = 0 5314, GD=
0 5859) and male (PIC = 0 6811, GD = 0 6516) samples, as
shown in Supplementary Tables S5 and S6.

The combined power of discrimination for the Kurdish
male and female was calculated using the 13 X-STR loci,
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and the resultswere 0.999999933 and0.99999999999828, respec-
tively. The combined MECKruger, MECKishida, MECDesmarais, and
MECDesmarais duo were 0.999815, 0.999999523, 0.999999524,
and 0.9999492, respectively (Table S7). The GATA172D05
locus had the most significant overall MEC value, while the
lowest MEC value was at the DXS10164 locus (Figure 2).

These results indicated that the 13 X-STR loci can be used to
establish a DNA database for a particular population.

A total number of 93 alleles was observed for the 13
X-STR loci. The number of different alleles at each locus
varied, ranging from 12 for the DXS7130 locus to 5 for the
DXS9902, DXS7132, and DXS7423 loci (Table S7). In
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Figure 2: Graph of forensic parameters and mean exclusion chance distribution of the 13 X-STR loci using female, male, and pool data.
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addition, the GATA172D05 locus had the highest number of
effective alleles (Ne) (female Ne = 5 425, male Ne = 5 360).
In contrast, the locus DXS10164 had the lowest Ne for the
female (Ne = 2 389) and male (Ne = 2 837) samples, as
shown in Table S8.

3.7. Linkage Disequilibrium. The exact pairwise test of LD
for all pairs of loci was tested by the STRAF 2.1.5 online tool
using female and male data separately. In this study, 78
pairwise comparisons were performed. The results are
shown in Supplementary Tables S9 and S10. After applying
Bonferroni’s correction (p < 0 0003, male) and (p < 0 0007,
female), a significant association was found in one pair of
loci, which was between the DXS7130 and DXS981 loci
(p = 0 0001) in the female data. There was no statistically
significant LD in the male data.

3.8. Population Study. In the present study, allele frequency
data from seven loci were used to compare genetic variations
among the Iraqi Kurd and 18 other ethnic groups and pop-
ulations, including Iraqi Arab, U.S. African, U.S. Caucasian,
U.S. Hispanic, U.S. Asian, Han China, Uigur China, Mongol
China, Casablanca Morocco, northeast Spain, Brittany,

Ireland, northern Portugal, Andalusia Spain, Basque Coun-
try, Caucasians, Nabeul Tunisia, and Brazil Rio de Janeiro
[19–28]. Four subpopulations were obtained, as shown in
Figure 3. The inferred subpopulations were as follows: clus-
ter 1: Iraqi Kurds, Caucasians, Iraqi Arabs, U.S. Caucasians,
U.S. Hispanics, U.S. Asians, and Chinese (Uigur, Mongol,
and Han); cluster 2: northern Portugal, Basque Country,
Brittany, Ireland, Andalusia Spain, northeast Spain, and
Nabeul Tunisia; cluster 3: Brazil Rio de Janeiro and U.S.
African; and cluster 4: Casablanca Morocco.

The metric multidimensional scaling (MDS) was gener-
ated to obtain the relationships among samples from the
Kurdish ethnic group and 18 other populations. The MDS
results showed the level of similarity between the popula-
tions (Figure 4). The upper right quadrant had two groups:
the first group included Iraqi Arabs, Iraqi Kurds, and U.S.
Caucasians; the second group was Brazil Rio de Janeiro,
Nabuel Tunisia, Basque country, northeast Spain, Ireland,
northern Portugal, and Brittany. The upper left quadrant
had six populations, including Caucasians, U.S. Hispanics,
Uigur China, Mongol China, Han China, and U.S. Asian,
while the U.S. African and Andalusia were separated from
all ethnic groups outside the clusters.
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Figure 3: Phylogenetic tree generated using POPTREE2 tool based on FST values of 7 X-STR loci in the Iraqi Kurds and 18 other ethnic
groups and populations.
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The genetic correlation matrix was constructed to depict
the association between genetic differentiations in these eth-
nic groups and populations (Figure 5). The results revealed a
strong relationship between Iraqi Kurds, Caucasians, Iraqi
Arabs, U.S. Hispanics, and Uigur China. In contrast, the
negative relationship was with northern Portugal, Brittany,
and northeast Spain.

The evolutionary relationship studies revealed that the
Iraqi Kurds are more genetically related to the Iraqi Arabs,
Caucasians, U.S. Caucasians, U.S. Hispanics, and Chinese
populations.

4. Discussion

This study investigated allele frequencies and forensic
parameters of the Kurdish population in Sulaymaniyah
province using noncommercial kit markers. Despite the
limited number of loci in this panel, informative results were
obtained by analyzing 13 X-STRs and amelogenin, which have
been added to the Kurdish genetic data. These findings can be
utilized in forensic DNA and population genetic studies.

ChrX-STR.org2.0 (https://www.chrx-str.org/xdb/index.jsf)
is a website that provides databases of chromosome X-STRs.
However, some markers have limited genetic data for a
few populations, such as DXS7424, DXS6795, DXS10164,
DXS7130, and GATA144D04. In addition, the limited avail-
ability of the X-chromosome STR database resulted in a

reduced number of genetic loci used to construct the phylo-
genetic tree.

Previous research on the Kurdish X-STRs used the
Investigator Argus X-12 QS kit, which consists of twelve loci
organized into four linkage groups [29]. In contrast, our in-
house tool includes 13 loci, with ten of them not present in
the Investigator Argus X-12 QS kit. Previous studies have
developed in-house X-STRs in Iraq [19, 30]. However, they
have selected different sets of X-chromosome loci compared
to our work. In addition, DNA samples from Iraqi Arab
males in Baghdad City were only examined. Other studies
have reported developing and validating new X-STR assays
utilizing different combinations of the X-STR loci to obtain
genetic information from particular populations and to inves-
tigate the forensically relevant parameters [31–35]. The pres-
ent study found that the highest and lowest GD and PIC in
the Kurdish population were at the GATA172D05 and
DXS10164 loci, respectively. The same locus (GATA172D05)
was found to be the most informative in the Murcia popula-
tion in Spain [36]. The least informative locus (DXS10164)
was also determined in the Chinese Uygur population [37].

Using X-chromosome STR loci, commercial and non-
commercial kits may serve as an efficient complementary
tool to autosomal STR, Y-STR, and mitochondrial DNA
markers in forensic investigations; this is particularly
applicable in paternity cases where the available information
is uncertain.
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Figure 4: A metric multidimensional scaling analysis based on the genetic distance values (FST) of the Iraqi Kurdish groups and 18 other
populations.
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5. Conclusions

In this study, a specific PCR systemwas designed for the human
X chromosome. Hierarchical tree and population comparisons
revealed clustering based on ethnogeographic relationships.
The findings demonstrated that this X-chromosome system is
reliable and effective in analyzing numerical X-chromosome
abnormalities and establishing genetic databases. However,
increasing the loci will lead to more accurate population and
forensic genetic studies. Furthermore, incorporating loci with
more alleles into the in-house X-STR will enhance the results
and develop a robust tool suitable for identification in complex
forensic cases.
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