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The electronic states of carriers between two concentric spheres of Kane-type semiconductor are theoretically investigated and
compared with the results of the parabolic band approximation. Calculations are performed for a hard-wall confinement poten-
tial and the eigenstates and the eigenvalues of the Kane Hamiltonian are obtained. Taking into account the real band structure
(strong spin-orbital interaction, narrow band gap), the size dependence of the energy of electrons, light holes, and spin-orbital
splitting holes in InSb semiconductor concentric spheres are calculated. According to the obtained results both in parabolic and
nonparabolic (Kane model) cases, the electron energy levels come close to each other with the increasing of the radius.
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1. INTRODUCTION

In recent years, the optical properties of nanosize semicon-
ductor crystals have attracted the attention of many inves-
tigators because of their potential applications [1, 2]. The
ability to tune their absorption and photoluminescence spec-
tra over a very wide range of energy, as much as, 1.2 eV,
by varying the crystal size opens the opportunity of fabri-
cating nanocrystal-based tunable lasers and light-emitting
diodes [3]. The progress in submicrometer technology has
made possible the fabrication of new type of semiconduc-
tor nanostructures whose characteristics change with respect
to the geometry of them as quantum dots, quantum wires,
and quantum wells. Energy spectrum of carriers in quan-
tum dots, quantum wires, and quantum boxes was inves-
tigated theoretically by many groups [3–6]. In [3], the size
dependence of the electron and hole quantum size levels in
spherical semiconductor nanocrystals were studied. In that
work, an analytical theory of the quantum size levels within a
spherical eight-band Pidgeon and Brown model, which takes
into account both the coupling of conduction band and va-
lence bands and the complex structure of the valence band
in nanocrystals with an infinite potential barrier, was devel-
oped. The calculated level structures for narrow-gap InSb,
moderate-gap CdTe, and wide-gap CdS nanocrystals were
presented. It is shown that a new formalism for determining

energy eigenstates of spherical quantum dots and cylindrical
quantum wires in the multiple-band envelope-function ap-
proximation was described in [4]. The bound states were
studied for the conduction band and coupled light and heavy
holes, as a function of the radius of the GaAs/AlxGa1−xAs
quantum dot. Implications of the band-coupling effects for
optical matrix elements for quantum wires and dots were
discussed. The size dependence of the spectra of free carriers
in A3B5- and A2B6-type semiconductor spherical quantum
dots is studied [5]. The advantages of a universal method for
obtaining equations that are invariant under the transforma-
tions of the rotations groups, is that it directly yields a sys-
tem of equations for the radial functions for any number of
bands considered. A nonsymmetrized 8-band effective-mass
Hamiltonian for quantum-dot heterostructures (QDHs) in
Burt’s envelope-function representation was derived [6]. The
8 × 8 radial Hamiltonian and the boundary conditions for
the Schrödinger equation were obtained for spherical QDHs.
Electron and hole energy spectra in three spherical QDHs,
HgS/CdS; InAs/GaAs; and GaAs/AlAs, were calculated as a
function of the quantum-dot radius within the approximate
symmetrized and exact nonsymmetrized 8 × 8 models. In
a study of Alonso et al., a relativistic free particle in a one-
dimensional box is studied [7].

In the present study, using three-band Kane’s model in-
cluding the conduction band, light, and spin-orbital splitting



2 Journal of Nanomaterials

hole bands, the energy spectrum of carriers between two
concentric spheres is calculated. The system considered here
consists of two concentric spheres, and the carriers are as-
sumed to be between the region of two concentric spheres.
The potential of the concentric spheres is taken to be infini-
tive and consequently the wave functions are taken to be zero
at the boundary.

In the three-band Kane’s Hamiltonian, the valence and
conduction bands interaction are taken into account via the
only matrix element P (so-called Kane’s parameter). The sys-
tem of Kane equations including the nondispersional heavy
hole bands have the following forms [8, 9]:
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Here P is the Kane parameter, Eg is the band gap energy, Δ is

the value of spin-orbital splitting, and k± = kx + iky ,
−→
k = i

−→∇,
and ci are envelope functions.

2. CALCULATING THE ENERGY SPECTRUM

Substituting the expressions (3)–(8) into formulas (1) and
(2), we obtain{
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where Δ3 is three-dimensional Laplacian in spherical coordi-
nates,
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In spherical coordinates, the eigenfunction is

C1,2 = R1,2(r)Ym
l (θ,φ), (11)

where l is the orbital quantum number and m is the az-
imuthal quantum number. The radial function R1,2(r) is

found to satisfy the following differential equation:
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Equation (12) can be rewritten in the form
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The solution of (13) is spherical Bessel’s equation and it is
given by
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where Jl(Xnlr), Nl(Xnlr) are the spherical Bessel functions
of the first and second kinds. Two of the first spherical Bessel
functions are as follows [10]:
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It is required that the wave function satisfy the following
boundary condition:
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) = R1,2
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) = 0. (17)

Equation (17) yields the following result:
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Equations (14) and (17) together show that the radial eigen-
value spectrum is
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where znl is the nth root of (18).
Equation (19) determines the energies of electrons, light

holes, and spin-orbital splitting holes in Kane-type semicon-
ductor concentric spheres. It is also useful for analyzing the
influence of nonparabolicity on the energy spectrum of car-
riers in concentric spheres.

In Figure 1, the dependence of E(R) on two cases are
presented: (a) electrons with parabolic dispersion law and
(b) electrons with Kane’s dispersion law for InSb concentric
spheres. According to this figure, the energy levels in both
cases become close to each other with the increasing of the
inner radius R1. At rather small sizes of R1, the variance in
the electron dispersion laws becomes more and more impor-
tant, and therefore the curves for E(R) keep away from each
other.
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Figure 1: Lowest-order energy eigenvalues of electrons as a func-
tion of increasing inner radius R1 for parapolic (p) and nonpara-
polic (np) dispertion laws.
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Figure 2: The energy spectrum of carriers (electrons, light holes,
spin-orbital splitting holes) as a function of the inner radius R1 in
spherical quantum box for InSb.

In Figure 2, the inner radius (R1) dependence of the en-
ergy of carriers is given (electrons, light holes, spin-orbital
splitting holes), where R2/R1 = 2 in nonparabolic dispersion
law.

In Figure 3, the dependencies of E(R) of electrons and
light holes as a function of inner radius R1, with R2 fixed at
400 for nonparabolic dispersion laws, are presented for InSb-
type concentric spheres. The energy scale is in units of Eg , Eg
is the band gap energy, and the curves are labeled by quan-
tum numbers (ln). According to this figure both in electrons
and light holes for a small radius, there is an appreciable sep-
aration between states corresponding to different n but equal
l quantum numbers.

In the calculations of the carriers energy spectra for nar-
row gap InSb concentric spheres, we chose the semiconduc-
tor band-structure parameters for InSb: energy gap Eg =
0.2368 eV, spin-orbit splitting is Δ = 0.810 eV, the value of
the nonparabolicity parameter is EP = 23.42 eV [3].

3. CONCLUSION

The energy spectrum of carriers in InSb concentric spheres is
investigated both in parabolic and nonparabolic dispersion
laws. It is seen that the energy of electrons in parabolic and
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Figure 3: Lowest-order energy eigenvalues of electrons and light
holes as a function increasing inner radius R1 and outer radius
R2 = 500 for nonparabolic dispersion laws. The (ln) sequence is
{(01), (0, 2), (1, 1), (1, 2)}.

nonparabolic cases becomes close to each other with the in-
creasing of the inner radius R1. It is shown both in electrons
and light holes that for a small radius, there is an appreciable
separation between states corresponding to different n but
equal l quantum numbers.
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