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The effect of a nanocolumnar TiO2 compact layer in dye-sensitized solar cells (DSSCs) was examined. Such a compact layer was
sputtered on a glass substrate with an indium tin oxide (ITO) film using TiO2 powder as the raw material, with a thickness
of ∼100 nm. The compact layer improved the short-circuit current density and the efficiency of conversion of solar energy to
electricity by the DSSC by 53.37% and 59.34%, yielding values of 27.33 mA/cm2 and 9.21%, respectively. The performance was
attributed to the effective electron pathways in the TiO2 compact layer, which reduced the back reaction by preventing direct
contact between the redox electrolyte and the conductive substrate.

1. Introduction

Dye-sensitized solar cells (DSSCs) are of particular interest
in the field of solar energy, because of their low cost,
simplicity of fabrication, and high solar energy conversion
efficiency [1–5]. They have a basic structure that comprises
two conductive substrates (another is coated catalyzer, for
example, platinum), an absorbing layer of semiconductor
materials, dye molecules, and a redox electrolyte. The
principle of operation of DSSCs is that electrons are injected
from the photoexcited dye into the conductive band of the
semiconductor and forward flows to an external loop under
illumination, while the electrolyte reduces the oxidized dye
and transports the positive charges to the counter electrode.
Extensive research has been performed to improve each
component of DSSCs.

Gold nanoparticles (GNPs) have been used in solar cells
because of their particular optical and electrical properties.
They reportedly increase the generation of charge carriers,
photocurrent, and efficiency of conversion of solar energy in
DSSCs [6–8]. Several materials have been employed in the
compact layer, or blocking layer; they include TiO2 [9–11],
Nb2O5 [12], ZnO [13], CaCO3 [14], and BaCO3 [15], which
reduce the area of contact between the conductive substrate
and the redox electrolyte. Among them, TiO2 is commonly

preferred because of its favorable antichemical and antiphoto
corrosion abilities. The introduction of the compact layer
between the conductive substrate and the porous films may
improve the adherence between them and the transfer of
electrons by increasing the number of electron pathways.

In this study, short-circuit current density is increased
by introducing a compact layer to improve the performance
of DSSCs. The photovoltaic characteristics of DSSC with
and without a nanocolumnar TiO2 compact layer were
investigated by making spectral response and illuminated
current density-voltage (J-V) measurements.

2. Experiment

Colloidal TiO2 was prepared from 6 g nanocrystalline
powder (Degussa, P25 titanium oxide, Japan), 0.1 mL of
TritionX-100, 0.2 mL of acetylacetone, and 3 mL of aqueous
GNPs in 7 mL deionized water, which were stirred together
for 14 hrs. Subsequently, the mixture was spin-coated on
indium tin oxide (ITO) glass substrate to a thickness of
around 15 μm, and a 0.3 × 0.3 active area was defined.
Thereafter, the photoelectrode was immersed in a 3 ×
10−4 M solution of dye (cis-bis(isothiocyanato) bis (2,2′-
bipyridyl-4,4′-dicarboxylato)-ruthenium(II) (N3) in ethanol
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Figure 1: Schematic cross section of the DSSCs with nanocolumnar
TiO2 compact layer.

for 24 hrs, before being sintered at 450◦C for 30 min, to
increase its anatase content (anatase : rutile = 85 : 15) [16].
The compact layer was formed on an ITO glass substrate
by sputtering the target using P25 TiO2 powder as a raw
material. The electrolyte was composed of 0.05 M iodide
and 0.5 M lithium iodide with and without 0.5 M 4-tert-
butylpyridine (TBP) in propylene carbonate. Then, a 100 nm
thick layer of platinum was sputtered onto ITO substrate
as a counter electrode. Cells were fabricated by placing
sealing films (SX1170-60, SOLARONIX) between the two
electrodes, and just leaving two via-holes for injection
electrolyte. The sealing process was carried out on a hot plate
at 100◦C for 3 min. Then, the electrolyte was injected into
the space between the two electrodes through the via-holes.
Finally, the via-holes were sealed using the epoxy with low
vapor transmission rate. Figure 1 schematically depicts the
complete structure.

A field emission scanning electron microscope (FESEM)
(LEO 1530) was adopted to examine the cross-section and
surface morphology of the cells. The J-V characteristics
were measured using a Keithley 2420 programmable source
meter under irradiation by a 1000 W xenon lamp. The
incident photon to electron conversion efficiency (IPCE)
was measured using a spectrometer (DM-201, DONGWOO
OPTRON) also under illumination by the 1000 W xenon
lamp. Finally, the irradiation power density on the surface
of the sample was calibrated as 100 mW/cm2.

3. Results and Discussion

Figures 2(a) and 2(b) present the cross-sectional and surface
SEM images of the TiO2 compact layer on ITO glass sub-
strate. The mean size of the porous TiO2 particles and the size

of the nanocolumns of the 100 nm thick TiO2 compact
layer, were about 12 nm. The diameter of the sputtered TiO2

compact layer had a diameter similar to that of the porous
TiO2 film that absorbed the dye molecules. Accordingly,
the porous TiO2 film formed a superior contact with the
nanocolumnar TiO2 compact layer and the electrolyte could
not come into direct contact with the ITO substrate. The
back transfer of electrons was thus reduced.

Figure 3 shows a typical XRD pattern of a TiO2 compact
layer that is deposited on ITO glass substrate by sputtering.
Two dominant anatase diffraction peaks, (101) (2θ = 25.28◦)
and (004) (2θ = 37.73◦), are observed. The results are
consistent with the SEM image of nanoporous TiO2 in
Figure 2(a). Anatase-based TiO2 has been regarded as the
best semiconductor oxide for DSSCs, because an anatase
film has a larger surface area per unit volume than a rutile
film,and so is better able to absorb dye, has a longer electron
diffusion coefficient, and has a shorter electron transit time
[3, 17, 18].

Figure 4 plots the J-V characteristics of DSSCs with and
without a TiO2 compact layer that was injected with different
electrolytes. Table 1 presents the characteristic parameters of
these DSSCs. The cell has an active area of 0.3× 0.3 cm2 and
no antireflective coating. The short-circuit current density
and the efficiency of conversion of solar energy to electricity
of traditional DSSCs with a TiO2 compact layer were
improved by 53.37% and 59.34%, respectively. Therefore, the
improvement in the overall performance of DSSCs was due
to the introduction of a nanocolumnar TiO2 compact layer.

The increase in the short-circuit current density and the
number of electrons that could reach the ITO substrate was
attributed to the presence of effectively continuous electron
pathways, which reduced the recombination of electrons,
between the porous TiO2 film and the ITO substrate.
Furthermore, in this work, the GNPs were doped in porous
TiO2 films, raising the Fermi level [7, 8] as a Schottky barrier,
and then the exiting electrons flowed spontaneously into the
TiO2 conductive band through the barrier, inhibiting the
back-transfer of electrons [19]. Hence, the solar conversion
efficiency of DSSCs with a compact layer was higher than that
of traditional DSSCs.

Figure 5 plots the IPCE spectra obtained with and with-
out a TiO2 compact layer. It demonstrates that the energy
conversion efficiency of DSSCs with a TiO2 compact layer
was overall higher than that of DSSCs without a TiO2 com-
pact layer. In particular, the difference between the efficiency
with a compact layer and that without was approximately
20%. The IPCE also can be determined using the following
equation [20, 21]:

IPCE(λ) = LHE(λ) · ϕinj · ηcoll, (1)

where LHE denotes the light harvesting efficiency of the
dye molecule; ϕinj is the electron injection efficiency of the
excited dye into the TiO2, and ηcoll is the collection efficiency
of the system.

The procedures, equipment, and working environment
of DSSCs were the same in all experiments: the parameters
ϕinj and LHE were held almost constant, so the IPCE value
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Figure 2: (a) The SEM cross-section image of photoanode with compact layer. (b) The SEM morphological image of TiO2 compact film.

Table 1: The parameters of DSSCs with and without TiO2 compact layer (CPL) at different electrolytes.

Sample Voc (V) Jsc (mA/cm2) F.F. η (%)

CPL + LiI 0.563 27.33 0.599 9.21

LiI 0.526 17.82 0.617 5.78

CPL + LiI + TBP 0.681 11.82 0.609 4.90

LiI + TBP 0.692 5.31 0.561 2.06
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Figure 3: XRD pattern of compact layer on ITO substrate.

was thus determined by ηcoll according to (1). Consequently,
the parameter ηcoll of DSSCs with a compact layer exceeded
that of those without because the former contained more
effective electron pathways.

4. Conclusions

This work discusses the improvement associated with
the introduction of a nanocolumnar TiO2 compact layer
between the porous TiO2 film and the conductive substrate
in DSSCs. The short-circuit current density and the efficiency
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Figure 4: The J-V characteristics of DSSCs with and without
compact layer at different electrolytes.

of conversion of solar energy to electricity were thus
improved by 53.37% and 59.34%, respectively. The enhanced
performance of DSSCs with a compact layer was attributed
to the increase in contact area between porous TiO2 and
the ITO substrate and the presence of effectively continuous
electrons pathways in the sputtered TiO2 compact layer,
which reduced back transfer by preventing direct contact
between the redox electrolyte and the conductive substrate.
Therefore, the short-circuit current density and efficiency
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Figure 5: Photocurrent action spectra of DSSCs with and without
compact layer.

of conversion of solar energy to electricity were increased to
27.33 mA/cm2 and 9.21%, respectively, under illumination
by a 1000 W Xe lamp.
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