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Although the adverse health effects of nanoparticles/materials have been proposed and are being clarified, their facilitating effects
on preexisting pathological conditions have not been fully examined. In this paper, we provide insights into the immunotoxicity of
nanoparticles/materials as an aggravating factor in hypersusceptible subjects, especially those with immune-related respiratory
disorders using our in vivo experimental model. We first exhibit the effects of nanoparticles/materials on lung inflammation
induced by bacterial endotoxin (lipopolysaccharide: LPS) in vivo as a disease model in innate immunity, and demonstrated
that nanoparticles instilled through both an intratracheal tube and an inhalation system can exacerbate the lung inflammation.
Secondly, we introduce the effects of nanoparticles/materials on allergic asthma in vivo as a disease model in adaptive immunity,
and showed that repetitive pulmonary exposure to nanoparticles has aggravating effects on allergic airway inflammation, including
adjuvant effects on Th2-milieu. Taken together, nanoparticle exposure may synergistically facilitate pathological inflammatory
conditions in the lung via both innate and adaptive immunological abnormalities.

1. Introduction

Epidemiological studies have demonstrated a correlation
between exposure to air pollutant particles at the con-
centrations currently found in major metropolitan areas
and mortality and morbidity [1]. The concentration of
particulate matter (PM) with a mass median aerodynamic
diameter (a density-dependent unit of measure used to
describe the diameter of the particle) � 2.5 μm (PM2.5)
is more closely associated with both acute and chronic
respiratory effects and subsequent mortality than larger
particles of � 10 μm (PM10) [2]. In addition, one intriguing
aspect of the epidemiologic data is that health effects of
PM2.5 are primarily seen in subjects with predisposing
factors, including pneumonia, asthma, chronic obstruc-
tive pulmonary disease, compromised immune systems,
atherosclerosis, age over 65 years old, and maybe depressive
states [3–6]. Partially consistent with the epidemiological
studies, we and others have experimentally demonstrated

that diesel exhaust particles (DEP), major contributors to
environmental PM2.5 in urban areas, exhibit respiratory
toxicity with or without predisposing pathologies including
allergic asthma, pulmonary emphysema, and acute renal
failure in vivo [7–15].

To date, nanoparticles, particles less than 0.1 μm in
mass median aerodynamic diameter, have been shown to
be increasing in ambient air [16]. Recent measurements
indicate that nanoparticle numbers in ambient air range
from 2 × 104/cm3 to 2 × 105/cm3, with mass concentrations
of more than 50 μg/m3 near major highways [17, 18]. Also,
nanoparticles have been implicated in cardiopulmonary sys-
tem effects [19]. Furthermore, compared to larger particles,
nanoparticles have a higher deposition rate in the peripheral
lung, can cross the pulmonary epithelium, reach the inter-
stitium [20], and may thus be systemically distributed in the
bloodstream [21]. Nanoparticles have an enhanced capacity
to produce reactive oxygen species, and consequently have a
widespread toxicity [22–24].
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Further, nanotechnology is now advancing at such an
incredible pace that it is has created an alternative indus-
trial revolution over the past few years [25]. Consistent
with this, the use of engineered nanomaterials has been
rapidly increasing in commercial applications. As these
materials have become more widespread, many questions
have arisen regarding the adverse effects they may have on
the environment as alternative inhalable toxicants. Due to
their sizes, characteristics, and/or existing pattern, nanopar-
ticles/materials have been implicated in cardiopulmonary
system effects [19]. Compared to larger particles, nanopar-
ticles have a higher deposition rate in the peripheral lung,
can cross the pulmonary epithelium reach the interstitium
[20], and, furthermore, may be systemically distributed in
the bloodstream [21]. Furthermore, nanoparticles have an
enhanced capacity to produce reactive oxygen species, and,
consequently, have a widespread toxicity [22–24]. Nanopar-
ticle exposure also reportedly influences cardiopulmonary
systems in the presence or absence of predisposing diseases
in human studies [26, 27]. However, biological evidence
concerning the promoting effects of nanoparticles/materials
on predisposing subjects has been less studied. Besides their
toxic effects on health, therefore, it should be experimen-
tally ascertained whether they also aggravate preexisting
pathological conditions, and their underlying mechanisms
should be resolved. In this paper, therefore, we will discuss
the impact of nanoparticles/materials as immunological
enhancers.

2. Effects of Nanoparticles on
Acute Lung Inflammation Induced by
Bacterial Endotoxin

A glycolipid of gram-negative bacteria, known as endotoxin
or lipopolysaccharide (LPS), stimulates host cells via innate
immunity [28]. In animal models, intratracheal adminis-
tration of LPS causes lung cytokine expression, neutrophil
recruitment, and lung injury [29]. LPS is found in bron-
choalveolar lavage (BAL) fluid of patients with pneumonia
[30] and acute respiratory distress syndrome [31], which
sometimes results in a fatal outcome. In addition, LPS is a
significant constituent of many air pollutant particles and
has accordingly been implicated in the adverse effects of
PM [32]. In accordance with the close links among LPS,
lung inflammation (injury), and PM, we have previously
shown that intratracheal administration of DEPs and their
components facilitates lung inflammation induced by LPS
[13, 33] and subsequent systemic inflammation with coag-
ulatory impairment [14].

We next examined the effects of pulmonary exposure
to nanoparticles on lung inflammation related to LPS in
mice. Vehicle, two sizes (14 and 56 nm) of carbon black
nanoparticles, LPS, or LPS + nanoparticles was administered
intratracheally, and parameters of lung inflammation and
coagulation were evaluated. Nanoparticles alone induced
slight lung inflammation and significant pulmonary edema
as compared with the vehicle. Fourteen-nm nanoparti-
cles intensively aggravated LPS-elicited lung inflamma-

tion and pulmonary edema, which was concomitant with
the enhanced lung expression of interleukin (IL)-1β,
macrophage inflammatory protein (MIP)-1α, macrophage
chemoattractant protein (MCP)-1, MIP-2, and keratinocyte
chemoattractant (KC) in overall trend, whereas 56-nm
nanoparticles did not show apparent effects. Immunore-
activity for 8-hydroxyguanosine (OHdG), a proper marker
for oxidative stress, was more intense in the lung from
the LPS + 14-nm nanoparticle group than that from the
LPS group. The circulatory fibrinogen level was higher in
the LPS + 14-nm nanoparticle group than that in the LPS
group. Taken together, nanoparticles can aggravate lung
inflammation related to bacterial endotoxin, which is more
prominent with smaller particles. The enhancing effect may
be mediated, at least partly, via the increased local expression
of proinflammatory cytokines and via the oxidative stress.
Furthermore, nanoparticles can promote coagulatory distur-
bance accompanied by lung inflammation [34].

Furthermore, we examined the adverse effects of nano-
materials on this pathological model. In brief, ICR male mice
were divided into 8 experimental groups that intratracheally
received vehicle, three sizes (15, 50, 100 nm) of TiO2

nanomaterials, LPS, or LPS plus nanomaterials. Twenty four
hours after the treatment, both nanomaterials exacerbated
the lung inflammation and edema elicited by LPS, with
an overall trend of amplified lung expressions of cytokines
such as IL-1β, MCP-1, and KC. LPS plus nanomaterials,
especially with size less than 50 nm, elevated circulatory
levels of fibrinogen, IL-1β, MCP-1, KC, and von Willebrand
factor as compared with LPS alone. The enhancement tended
overall to be greater with the smaller nanomaterials than that
with the larger ones. cDNA microarray analyses revealed that
gene expression pattern was not different between the LPS
group and the LPS + nanomaterial groups. These results
suggest that nanomaterials exacerbate lung inflammation
related to LPS with systemic inflammation and coagulatory
impairment, and the exacerbation is more prominent with
smaller nanomaterials than that with larger ones ([35] and
unpublished data). Additionally, we demonstrated that latex
nanoparticles [36] and carbon nanotubes [37] have similar
adverse effects on the lung pathophysiology.

Our next study was conducted to determine whether
inhaled exposure to diesel engine-derived nanoparticles also
exacerbates the model. ICR mice were exposed for 5 hours
to clean air or diesel engine-derived nanoparticles at a
concentration of 15, 36, or 169 μg/m3 after intratracheal
challenge with LPS or vehicle, and were sacrificed for eval-
uation 24 hours after the intratracheal challenge. Exposure
to nanoparticles alone did not elicit lung inflammation.
Nanoparticle inhalation exaggerated LPS-elicited inflamma-
tory cell recruitment in the BAL fluid and lung parenchyma
as compared with clean air inhalation in a concentration-
dependent manner. Lung homogenates derived from the
LPS + nanoparticle groups tended to have an increased
tumor necrosis factor-α level and chemotaxis activity for
polymorphonuclear leukocytes as compared with those from
the LPS group or the corresponding nanoparticle groups.
Nanoparticle inhalation did not significantly increase the
lung expression of proinflammatory cytokines or influence
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Figure 1: Proposal schema for enhancement of nanoparti-
cles/materials on sensitive immune-related lung disorders.

systemic inflammation. Isolated alveolar macrophages from
nanoparticle-exposed mice showed a greater production of
IL-1β and KC stimulated with ex vivo LPS challenge than
those from clean air-exposed mice although the differences
did not reach significance. These results suggest that acute
exposure to diesel-nanoparticles exacerbates lung inflamma-
tion induced by LPS [38]. In sum, nanoparticle/material
exposure exacerbates acute lung inflammation related to
bacterial endotoxin (Figure 1).

3. Effects of Nanoparticles on
Allergic Airway Inflammation

Bronchial asthma has been recognized as chronic airway
inflammation with hyperresponsiveness that is characterized
by an increase in the number of activated lymphocytes and
eosinophils [39]. A number of studies have shown that
various particles including carbon black can enhance allergic
sensitization [40–42], which is referred to as “adjuvant effect”
as well. Carbon black has been demonstrated to enhance
the proliferation of antibody-forming cells and both IgE
and IgG levels [43, 44]. Ultrafine particles (PM and carbon
black) reportedly exaggerate allergic airway inflammation
in vivo [45, 46]. However, all studies have failed to pay
attention to the size of particles. Therefore, no research has
addressed the size effects of particles or nanoparticles on
airway biology in the presence or absence of allergen in vivo.
Given the hypothesis, we investigated the effects of carbon
black nanoparticles with a diameter of 14 nm or 56 nm on
allergen-related airway inflammation. ICR mice were divided
into six experimental groups. Vehicle, two sizes of carbon
nanoparticles, ovalbumin (OVA) and OVA + nanoparticles,
were administered intratracheally. The cellular profile of BAL
fluid, lung histology, expression of cytokines, chemokines,
8-OHdG, and immunoglobulin production were studied.

Nanoparticles with a diameter of 14 nm or 56 nm aggravated
antigen-related airway inflammation characterized by the
infiltration of eosinophils, neutrophils, and mononuclear
cells, and by an increase in the number of goblet cells in the
bronchial epithelium. Nanoparticles with antigen increased
protein levels of IL-5, IL-6, IL-13, eotaxin, MCP-1, and
regulated upon activation and normal T-cells expressed and
secreted (RANTES) in the lung as compared with antigen
alone. The formation of 8-OHdG was moderately induced by
nanoparticles or allergen alone, and was markedly enhanced
by allergen plus nanoparticles as compared with nanoparti-
cles or allergen alone. The aggravation was more prominent
with 14 nm nanoparticles than that with 56-nm particles
in terms of the overall trend. Particles with a diameter
of 14 nm exhibited an adjuvant activity for total IgE and
antigen-specific IgG and IgE. Nanoparticles can aggravate
allergen-related airway inflammation and immunoglobulin
production, which become more prominent with smaller
particles. The enhancement may be mediated, at least partly,
by the increased local expression of IL-5 and eotaxin, and also
by the modulated expression of IL-13, RANTES, MCP-1, and
IL-6 [47]. Consistent with our study, de Haar and colleagues
have previously shown that nanoparticles (14 and 29 nm)
potently facilitate allergic airway inflammation as compared
with fine particles (250 and 260 nm) [48].

In ongoing reports, nanoparticles alone or OVA alone
moderately enhanced cholinergic airway reactivity, as
assessed by total respiratory system resistance (R) and New-
tonian resistance (Rn). All the parameters of lung responsive-
ness, such as R, compliance, elastance, Rn, tissue damping,
and tissue elastance, were worse in the OVA + nanoparticle
groups than those in the vehicle group, the corresponding
nanoparticle groups, or the OVA group. The lung mRNA
level for Muc5ac was significantly higher in the OVA group
than that in the vehicle group, and further increased in the
OVA + nanoparticle groups than that in the OVA or nanopar-
ticle groups. These data suggest that carbon nanoparticles
can enhance lung hyperresponsiveness, especially in the pres-
ence of allergen. The effects may be mediated, at least partly,
through the enhanced lung expression of Muc5ac [49].

Furthermore, we recently demonstrated that (single-
walled and multiwalled) carbon nanotubes promote allergic
airway inflammation in mice, which may be partly through
enhanced oxidative stress in the airway and the inappropriate
activation of antigen-presenting cells including dendritic
cells (in vitro) [50, 51]. In addition, other groups have
reported the similar impacts of nanomaterials (carbon nan-
otubes, TiO2, and on gold) us as on animal allergic asthma
models [48, 52–54]. Moreover, as for cellular contribution,
we and others have claimed that antigen-presenting cells
such as dendritic cells are important target cell populations
for the adjuvant activity of nanoparticles/materials [55–
57]. Taken together, nanoparticle/material exposure can
exacerbate allergic asthma (Figure 1).

4. Considerations for Future Directions

4.1. Risk Factors Regarding Nanoparticles. One important
point to be taken into consideration in these studies is the
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surface characteristics and numbers of nanoparticles used.
Our results indicate that nanoparticles, particularly smaller
ones (14 nm in diameter), can aggravate lung inflammation
related to LPS and allergic airway inflammation when the
weights of particles are equal. On the other hand, the surface
area of the 14-nm nanoparticles was 6.7 fold larger than that
of 56-nm nanoparticles (300 m2/g versus 45 m2/g, resp.). The
surface area of particles exposed to is reportedly correlated
with lung inflammation [37]. Alternatively, our studies have
demonstrated not only the size effects of nanoparticles on
lung inflammation, but also the effects of their surface area
and/or their numbers on the inflammation.

Unfortunately, we could not examine the effects of
nanoparticles with the same particle number in these studies.
The number of smaller nanoparticles is greater than that of
larger nanoparticles when the particles comprise the same
weight.

4.2. Possibility of Migration and Influence of Nanoparticles
Exposed to the Airway into Systemic Circulation. It also
remains to be argued whether nano-level particles/materials
delivered through the airway enter the systemic circulation
and cause serve adverse effects such as systemic inflammation
and thrombus formation. Nanoparticles are reportedly able
to penetrate deeply into the respiratory tract and can even
pass the lung to reach systemic circulation [58, 59]. Nemmar
et al. have previously demonstrated that nanoparticles can
migrate into the circulation [59]. In our study, the LPS +
nanoparticle groups, specifically the LPS + 14-nm nanopar-
ticle group, showed significantly higher fibrinogen levels
when compared to the LPS group. Additionally, although not
significant, the enhanced activity of vWF induced by LPS was
further increased by its combination with 14-nm nanoparti-
cles [34]. These findings suggest that smaller nanoparticles
can facilitate coagulatory disturbance accompanied by lung
inflammation. The enhancing effects of 14-nm nanoparticles
on LPS-elicited pulmonary edema further support this
concept. Interestingly, exposure to nanoparticles alone did
not induce significant fibrinogen production/release nor did
it activate vWF. It might be hypothesized that endothelial-
epithelial damage induced by LPS and subsequent infil-
trating effector leukocytes allow a large amount of smaller
nanoparticles to pass easily into the circulation, resulting
in synergistic effects on hemostasis including coagulatory
disturbance. On the other hand, exposure to environmental
particles reportedly generates local and systemic oxidative
stress, which, in turn, induces/enhances inflammation and
blood coagulation [58]. Further, Nemmar and colleagues
have demonstrated that nanoparticles instilled intratra-
cheally rapidly diffuse from the lung into the systemic
circulation in vivo [59]. Therefore, it is also possible that
intratracheally instilled nanoparticles enter the circulation by
themselves and contribute to a high susceptibility to LPS-
elicited systemic inflammation and coagulatory disturbance.
Future studies are needed to confirm the penetration and
address the above-mentioned hypothesis.

4.3. Model’s Relevance to the Actual Situation. In real-
ity, we inhale suspended particulate matters in ambient

air, but do not intratracheally receive them in aliquot.
Nevertheless, the impacts of inhalation exposure to these
particles/materials, the more realistic exposure, on this
lung inflammation model had less been conducted by us
and others. In our previous study, nanoparticle-rich diesel
exhaust inhalation exaggerated lung inflammation induced
by LPS [38]. Nonetheless, we have not completed/examined
the effects of the inhalation on other disease models. In
future, therefore, more realistic research considering the
effects of the mode of nanoparticles/materials administration
(instillation versus aerosolization, droplets versus powder,
etc.) on the in vivo response would be very valuable to
toxicologists, environmental scientists, and immunologists.
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