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A biosensor comprising tyrosinase immobilized on bifunctionalized multiwalled carbon nanotube (MWNT) supports was
prepared for the detection of phenolic compounds in drinks such as red wine and juices. The MWNT supports were
prepared by radiation-induced graft polymerization (RIGP) of epoxy-containing glycidyl methacrylate (GMA), to covalently
immobilize the tyrosinase, and vinyl ferrocene (VF), which can act as an electron transfer mediator via redox reactions. The
bifunctionalized MWNTs were characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy
(TEM), and thermogravimetric analysis (TGA). Electrodes prepared with the MWNTs showed increased current with increasing
VF content. A biosensor comprising tyrosinase immobilized on the bifunctionalized MWNTs could detect phenol at 0.1–20 mM.
Phenolics in red wine and juices were determined using the biosensor after its calibration.

1. Introduction

Amperometric enzymatic biosensors are potentially useful
in chemical and biomedical analyses, pollution monitoring,
biotechnology, and food and agricultural processing [1–3].
They are suitable for biochemical analysis because of their
good selectivity, sensitivity, rapid responses, compactness,
and reproducible results [4, 5]. However, the electron
transfer efficiency of the redox enzymes is poor in the absence
of mediator, because the enzymes’ active sites are deeply
embedded in the protein. Biosensors’ sensitivities can be
significantly improved by the addition of mediators in the
sensors’ matrices.

Ferrocene and its derivatives have been reported as elec-
tron transfer mediators due to their relatively low molec-
ular mass, reversibility, regeneration at low potential, and
generation of stable redox forms [6–9]. There has been
much research on of the immobilization of electron transfer
mediators on electrodes’ surfaces, because low-molecular-
weight, soluble mediators can easily diffuse away from
an electrode’s surface into the electrolyte if a biosensor

is used continuously, significantly decreasing the electron
signal and the performance and lifetime of the biosensor.
The covalent immobilization of ferrocene derivatives onto
electrode supports can reduce this problem.

Radiation-induced graft polymerization can introduce
specific characteristics to the surface of a functional poly-
mer’s matrix such as thermal stability, mechanical strength,
electronic properties, and crystallinity. Enzymatic biosen-
sors have been prepared by the radiation-induced graft
polymerization of vinyl monomers with various functional
groups onto MWNTs at room temperature [10–14]. The
functional groups of the vinyl monomers can be used
as physical interaction sites because they have hydrophilic
properties compatible with those of the enzyme, allowing
their functional groups to interact easily on the surface
of the electrode. MWNTs have been used as supporting
materials because of their high chemical stability, high
surface area, unique electronic properties, and relatively
strong mechanical properties [15].

Glycidyl methacrylate (GMA) is a monomer that can
be easily modified with various functional groups. As it
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Figure 1: Preparation tyrosinase-immobilized biosensor on MWNT supports for the detection of phenolic compounds.

is polymerized, its epoxy groups become available for the
introduction of functional groups, such as amines [16],
alcohols [17], phosphoric acid [18], and proteins [19, 20].
The epoxy-modified polymer surface is stable over long
storage periods and is relatively resistant to hydrolysis.
Biomolecules, such as proteins, can be covalently coupled by
opening the epoxide bridges in alkaline media.

On the other hand, the biosensors based on MWNT for
determination of phenolic compounds have been studied by
many researchers [4, 21–23]. However, there are no reports
about the preparation of MWNTs supporting with bifunc-
tional group using radiation-induced graft polymerization
until now.

This work reports MWNT supports with epoxy groups,
as covalent sites, and ferrocene groups, as electron mediators,
prepared by RIGP with various composition of GMA and VF
monomers. The resulting MWNT supports were analyzed
by X-ray photoelectron spectroscopy (XPS), transmission
electron microscopy (TEM), and thermogravimetric anal-
ysis (TGA). Electrodes were prepared by hand casting
the MWNT supports onto the surface of GC electrodes.
Their currents were measured with respect to the relative
composition of the GMA and VF monomers. A tyrosinase-
immobilized biosensor was prepared by immobilizing tyrosi-
nase in 0.1 M carbonated buffer solution (1.0 mL, pH 9.5)
for the detection of phenolic compounds. Its phenol sensing
efficiency was evaluated in a phosphate buffer solution.
Optimal operating conditions such as pH, temperature,
and phenol detection range were evaluated. Total phenolic
concentrations in three red wines and twelve juices were then
determined using the tyrosinase-modified biosensor.

2. Experiment Details

2.1. Reagents. Tyrosinase from mushrooms (EC 1.14.18.1),
phenol, p-chresol, catechol, glycidyl methacrylate (GMA),

and vinyl ferrocene (VF) were from Aldrich-Sigma Chemical
Co., MWNTs (CM-95) were from Hanwha Nanotech Co.,
Ltd., (Republic of Korea). Solutions were prepared with water
from a Milli-Q puls water purification system (Millipore Co.,
Ltd., final resistance, 18.2 MΩ cm−1) that was degassed prior
to each measurement. Other chemicals were of reagent grade.

2.2. Preparation of a Biosensor Comprising Tyrosinase Immo-
bilized on Bifunctionalized MWNT Supports. Figure 1 out-
lines the preparation of the tyrosinase-immobilized phenol
biosensor. The MWNTs were first purified to remove the
catalyst and noncrystallized carbon impurities by treatment
with phosphate solution. They were then used as the
supporting material for grafting binary vinyl monomers:
GMA, with epoxy groups, and VF, which can act as an
electron transfer mediator via rodox reactions. 0.2 g MWNT
and various compositions of the binary vinyl monomers
(Table 1) were mixed in methanol (350 mL). Nitrogen gas
was bubbled through the solution for 30 min to remove
oxygen. The solution was then irradiated by γ-rays from
a 60Co source under atmospheric pressure and ambient
temperature. 30 kGy was administered at 1.0 × 104 Gy/h.
The prepared MWNT supports were dried in a vacuum
oven at 50◦C, and 3.0 mg was then dissolved in a mixture
of DMF (1.0 mL) and water (1.0 mL) to prepare the coating
solution. MWNT electrodes were fabricated by hand casting
6.0 μL coating solution onto GC electrodes (0.2 × 0.2 cm)
and drying in a vacuum oven at 50◦C for 24 hrs. Tyrosinase
was covalently immobilized on the epoxy groups of the most
suitable MWNT electrode by immersing the electrode in
0.1 M carbonated buffer solution (1.0 mL, pH = 9.5). 1.0 mL
base tyrosinase solution was then added to the MWNT
electrode in 0.1 M carbonated buffer solution, and the
reaction solution was adjusted to pH 9.0 with 0.1 M NaOH.
Tyrosinase was immobilized on the electrode by incubation
with shaking at 37◦C for 20 h. The tyrosinase-immobilized
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Table 1: Properties of the MWNT supports with bifunctional group prepared by RIGPa.

No
Feed

Graft yield (%)b Fe content (%)c CV current (mA)
GMA (mol-%) VF (mol-%)

1 100 0 20.0 — 2.27× 10−4

2 80 20 30.0 0.24 5.60× 10−2

3 60 40 15.0 0.36 1.21× 10−2

4 40 60 20.0 0.31 1.83× 10−2

5 20 80 20.0 0.36 1.09× 10−1

6 0 100 25.0 0.47 1.33× 10−2

a
Reaction condition: MWNT 0.2 g, solvent 350 mL (MeOH).

bDetermined by TGA. cDetermined by XPS.

biosensor was rinsed six times with 0.1 M carbonated buffer
(pH 8.0) and then twice with acetic acid buffer solution (pH
4.0). The resulting biosensor was stored in phosphate buffer
(pH 7.0).

2.3. Determination of Phenolic Compounds in Drinks using
Tyrosinase-Modified Biosensor. Total concentration of the
phenolic compounds for drinks was determined by com-
parison of calibration curves (see Figure 6). In detail, the
drop of drinks (0.04 mL) was added in PBS solution (pH 7.0,
3.96 mL), and then the cyclic voltammograms for phenolic
compounds using the prepared biosensor were recorded.

2.4. Instrumentation. Cyclic voltammograms were measured
with a potentiostat/galvanostat (model 283. Ametek PAR,
USA) in a conventional three-electrode system. The working
electrode was the GC MWNT electrode, the counterelectrode
was platinum wire, and the reference electrode was Ag/AgCl
(sat’d KCl). Samples’ surface morphologies were determined
by HR-TEM (JEOL, JEM-2010, USA). X-ray photoelectron
spectra were measured using on a MultiLab ESCA2000
(Thermo Fisher Scientific). Thermal gravimetric analysis
(TGA) was conducted on a Scinco TGA S-1000 (Seoul,
Republic of Korea) under N2 flow from 25◦C to 700◦C at a
heating rate of 20◦C/min.

3. Results and Discussion

3.1. Preparation and Characterization of MWNT Supports
with Bifunctional Groups. Various vinyl monomers such as
acrylic acid, methacrylic acid, glycidyl methacrylate, maleic
anhydride, and vinylphenyl boronic acid have previously
been grafted onto MWNT surfaces by radiation-induced
graft polymerization in aqueous solutions at room temper-
ature [15]. Vinyl monomers were selected for this work
because they possess hydrophobic sites to complement
the hydrophilic functional groups attached to them. The
vinyl groups interacted with the MWNTs’ surfaces through
hydrophobic-hydrophobic interactions, and the functional
groups attached to the vinyl monomers interacted with
the aqueous solution through their hydrophilic properties.
Radical polymerization of the vinyl monomers was per-
formed on the surfaces of the MWNTs during γ-irradiation.
This successfully introduced various functional groups to

the MWNTs’ surface while maintaining their tubular mor-
phology. Tyrosinase-immobilized biosensors incorporating
MWNT supports with anion-exchange [11], hydroxy [12],
and carboxylic acid [13] groups for the detection of phenolic
compounds have been prepared by the physical adsorption
of tyrosinase onto the MWNTs by RIGP. Biosensors prepared
by physical adsorption are of limited use as the adsorbed
tyrosinase can dissociate into the electrolyte during sensing,
greatly reducing sensing efficiency. To overcome enzyme dis-
sociation from the electrode, the tyrosinase should be cova-
lently immobilized on the surface of the MWNT electrode.
Therefore, GMA was chosen here to form covalent bonds
between its epoxy groups and amine groups of the tyrosinase
in alkali medium. Vinyl ferrocene, with ferrocene groups,
was selected as an electron transfer mediator to increase
sensing efficiency via redox reactions for the detection of
phenolic compounds.

Table 1 lists the results of radiation-induced graft poly-
merization of various compositions of GMA and VF onto
the MWNTs in MeOH at room temperature. Grafting yields
were found to be 15–30% by TGA. Fe contents increased
with increasing VF content. The maximum CV current was
displayed by the electrode with a molar ratio of GMA/VF of
80/20 (sample 5 in Table 1).

Figure 2 shows TEM images of the purified MWNTs, and
sample 5 prepared by RIGP. A fine coating on the surfaces
of MWNTs that increased their diameter (from 21± 0.05 nm
to 34 ± 0.05 nm) is observable in sample 5. The increased
diameter of the MWNTs indicates the successful attachment
of bifunctional groups by the radiation graft polymerization.
These MWNT supports can be covalently immobilized with
biomolecules such as enzymes, microbial molecules, and
proteins through reactions of epoxy group of the functional-
ized MWNTs and amine groups of the biomolecules in alkali
medium.

Figure 3 shows XPS spectra of the pure and RIGP-func-
tionalized MWNTs. Grafting the monomers significantly
affected the XPS data. The characteristic Fe 2ps peak at
713 eV appeared after grafting. Grafting with GMA resulted
in an additional peak at 288.7–289.5 eV due to carbonyl
groups in the polymer chains. These data support the
successful functionalization of the MWNTs by RIGP.

Figure 4 shows TGA curves of the purified and function-
alized MWNTs prepared by one-step radiation-induced graft
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Figure 2: TEM images of (a) purified MWNTs and (b) sample 5 in Table 1.
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Figure 3: XPS spectra of the MWNT supports in Table 1.
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Figure 4: TGA curves of (a) purified MWNTs and samples in
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Figure 5: Cyclic voltammograms in PBS at pH 7.0 of (a) GCE and
samples in Table 1: (b) 2, (c) 3, (d) 4, and (e) 5.

polymerization. The first weight loss from 50◦C to 250◦C
for the vinyl polymer-grafted MWNTs was attributable to
moisture loss because of the hydrophilic properties of the
grafted vinyl polymers. The second weight loss at 250–600◦C
was due to weight loss through the grafted vinyl polymer.
These results show that graft yields were ca. 15.0–30.0% after
RIGP of vinyl monomers.

To coat MWNT supports onto GC electrodes, poly-
mer binder is generally used. However, the functionalized
MWNT supports prepared here possessed polymer surfaces

and could be coated onto the surfaces of GC electrodes using
a DMF/water mixture without polymer binder. After hand
casting the MWNTs onto GC electrodes’ surfaces, CV data
were recorded in PBS at pH 7.0 (Figure 5). The current
increased with increasing Fe content of the binary monomer
mixture (Table 1). The maximum current was detected on
the electrode prepared with sample 5 in Table 1, which was
therefore expected to have the best sensing efficiency.

Table 2 exhibits the comparison of the electrochemi-
cal properties to the tyrosinase-modified biosensors. The
biosensor prepared in this study has a good stability and
sensitivity compared to that of other biosensor because
of covalently bonding and presence of electron transfer
mediator onto electrode supports, respectively. As results,
the radiation-induced copolymerization of two functional
monomers was good method for preparation of biosensor-
supporting materials.

3.2. Determination of Phenolic Compounds in Drinks Using
a MWNT-Based Biosensor. Biosensors comprising tyrosinase
immobilized on MWNT supports have been prepared
through the physical adsorption of tyrosinase onto electrodes
supporting MWNTs with hydrophilic functional groups [11–
13]. However, such electrodes are of limited use because
the enzyme can desorb into the electrolyte during detection.
Therefore, a covalently immobilized tyrosinase-based biosen-
sor was prepared here.

Cyclic voltammograms of phenols on the biosensor were
recorded in 50 mM phosphate buffer at pH 7.0 as a function
of phenol concentration (Figure 6). The detection response
range for phenol was found to be 0.1–20 mM. The sensitivity
of the biosensor was 0.187 A M−1 cm−2.

Total phenolics in red wine samples detected in a phos-
phate buffer using the tyrosinase-immobilized biosensor at
room temperature were found to be in the range of 580–
913 mg/L as shown in Table 3.

Total phenolic of several juices were also measured in PBS
using the tyrosinase-immobilized biosensor at room temper-
ature; they ranged between 490 and 750 mg/L (Tables 4 and
5). These tests demonstrate the effectiveness of the prepared
tyrosinase-immobilized biosensor for the determination of
phenolic compounds in drinks.

4. Conclusion

A covalently immobilized tyrosinase-based biosensor was
fabricated on MWNT supports bifunctionalized by radi-
ation-induced graft polymerization. Its sensing range for
phenol was 0.1 mM–20 mM. It was used to determine phe-
nolic compounds in commercial red wines and juices in
phosphate buffer solution; it found 580–913 mg/L phenolics
in various red wines and 490–750 mg/L phenolics various
juices. These results were calculated from a calibration curve
of phenols compiled for the sensor. These results show that
bifunctionalized MWNT supports can be used in enzyme-
immobilized biosensors as good electron transfer materials
and as supports for enzyme immobilization.
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Figure 6: (a) Calibration curve and (b) CV curves of the tyrosinase-immobilized biosensor in PBS at pH 7.0 with 0.1 mM–20 mM phenol at
a scan rate 50 mV/s.

Table 2: Comparison of electrochemical properties to the tyrosinase-modified biosensors.

Type of electrode
Sensitivity

(Am M−1 cm−2)
Sensing range

Detection
limit (nM)

Stability Reference

Poly 3,4-ethylenedioxythiophene/tyrosinase
electrode

608 Not reported 5
Retains activity

30% after 12 days
[24]

Colloidal gold
nanoparticles/graphite-Teflon/tyrosinase

407.04 0.010–8.0 M 20 39 days [25]

Tyrosinase/3-mercaptopropionicacid-modified Au
electrodes

196.7 0.2–100 M 88 5 days [26]

Organoclay-enzyme film electrodes 75 0.2–15 M Not reported Not reported [27]

Sol-gel immobilized tyrosinase electrode 208.83 1–60 M 200
Retains activity
57% of after 2

weeks
[28]

Nafion/ZnO/tyrosinase films 30.3 0.01–0.4 mM 4000
Retains activity

81.2% after 20 days
[29]

Poly(GMA-co-VF)-g-MWNT/DMF/tyrosinase
electrode

187 0.1–20 mM 25
Retain activity 90%

after 30 days
This work

Table 3: Determination of the phenolic compound concentration in real sample using tyrosinase-immobilized biosensor based on MWNT
supports with bifunctional group.

Number Brand name Current (mA) Phenolic compounds (mg/L)

1 Cambras (France) 3.89 × 10−2 913

2 Demeter (Australa) 4.11 × 10−2 880

3 Jinro wine (Korea) 7.72 × 10−2 580
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Table 4: Determination of the phenolic compounds concentration in real sample using tyrosinase-immobilized biosensor based on MWNT
supports with bifunctional group.

Number Brand name Current (mA) Phenolic compounds (mg/L)

1 Haruyachae-Red 9.96× 10−2 490

2 Haruyachae-Purple 8.93× 10−2 527

3 Haruyachae-Yellow 5.43× 10−2 732

4 Haruyachae-A 5.99× 10−2 686

5 Haruyachae-B 5.75× 10−2 705

6 Haruyachae-C 5.75× 10−2 705
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Table 5: Determination of the phenolic compounds concentration in real sample using tyrosinase-immobilized biosensor based on MWNT
supports with bifunctional group.

Number Brand name Current (mA) Phenolic compounds (mg/L)

7 Pulmuone yuki myung il yeok nok Jeub 9.37× 10−2 510

8 Pulmuone yuki keil nok Jeub 5.40× 10−2 735

9 Pulmuone danggeun Jeub 6.18× 10−2 672

10 Namyang at Home orange juice 7.81× 10−2 575

11 Seoulmilk 365 yuki achimtomato 6.12× 10−2 676

12 Nongshim welchs grape juice 7.61× 10−2 585
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