

Research Article

Hydrothermal Synthesis of Bi_2S_3 Nanorods from a Single-Source Precursor and Their Promotional Effect on the Photocatalysis of TiO_2

Juan Lu, Zuoshan Wang, Ying Zhang, and Xiufeng Zhou

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Soochow 215021, China

Correspondence should be addressed to Ying Zhang; yingzhang@suda.edu.cn

Received 30 January 2013; Accepted 22 April 2013

Academic Editor: Anukorn Phuruangrat

Copyright © 2013 Juan Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As a direct bandgap semiconductor, Bi_2S_3 has the potential ability to improve the photocatalytic activity of nano-TiO₂ due to its low energy gap (Eg = 1.3 eV). In this study, large-scale uniform Bi_2S_3 nanorods were synthesized by a hydrothermal treatment, using $Bi[S_2P(OC_4H_9)_2]_3$ as the single-source precursor. Characterization results show that as-prepared samples belong to an orthorhombic phase of Bi_2S_3 , and the products mainly crystallize in the form of nanorods which measure ca. 200 nm in length and ca. 50 nm in diameter. The photo-catalytic experiments for the degradation of methyl orange under visible irradiation revealed that a small amount of as-prepared Bi_2S_3 in our study would significantly improve the photo-catalytic activity of nano-TiO₂, whether Bi_2S_3 is introduced by a physical way or a chemical way. However, excess Bi_2S_3 will lead to a decrease in the catalytic efficiency of TiO₂ when Bi_2S_3 was introduced by a chemical way; it never happened when Bi_2S_3 introduced by a physical way. Even so, among all as-prepared samples, the TiO₂-based photo-catalyst with 3 wt.% Bi_2S_3 introduced by a chemical way exhibits the best catalytic performance under visible irradiation.

1. Introduction

As a direct bandgap semiconductor, Bi_2S_3 has the potential ability to improve the photocatalytic activity of nano-TiO₂ due to its low energy gap (Eg = 1.3 eV) [1–9]. As we all know, material's properties strongly depend on its structure which in turn has a close relationship with its preparation method. Therefore, in the case of the same TiO₂, the photocatalytic activity of Bi_2S_3/TiO_2 heterojunction will mainly rely on two aspects, including the different preparation methods for Bi_2S_3 and the different ways to introduce Bi_2S_3 into TiO₂.

Currently, there are many classic preparation methods for Bi_2S_3 nanoparticles or superstructures, such as hydrothermal method [10–12], solvothermal method [13], electrodeposition technique [14], chemical deposition [15, 16], spray pyrolysis deposition [17], microwave refluxing [18–21], and single-source precursor approach [22–28]. Among them, we select the single-source precursor approach to prepared Bi_2S_3 in our study because this method is effective in synthesizing a large number of products with uniform size. Besides, in most of the previous reports, Bi_2S_3 was introduced into TiO_2 by a chemical way. There are few articles that simultaneously related to the introduction of Bi_2S_3 into TiO_2 by a physical way and a chemical way and discussed their different effects on photocatalytic efficiency. To the best of our knowledge, only Bessekhouad et al. [8] reported the relational research. Nevertheless, their study was a little rough for the proportion of Bi_2S_3 in Bi_2S_3/TiO_2 heterojunction increased from 10 wt.% to 50 wt.%, with an increase of 20 wt.% each time. Therefore, it is still interesting to study in detail the influence of different preparation methods for Bi_2S_3/TiO_2 heterojunctions on their photocatalytic activity.

In this study, $Bi[(S_2P(OC_4H_9)_2]_3$ was selected as the single precursor to prepare Bi_2S_3 nanorods by a hydrothermal approach. As-prepared samples would significantly improve the photocatalytic activity of nano-TiO₂ for degradation of methyl orange (MO) under visible irradiation, whether Bi_2S_3 is introduced by a physical way or a chemical way. Meanwhile, the influences of different proportions of Bi_2S_3 on the catalytic efficiency of TiO₂ were discussed in detail.

2. Experimental

All reactants and solvents are in analytical grade and are used without further purification.

2.1. Preparation of $Bi[S_2P(OC_4H_9)_2]_3$. At the beginning, 0.4 mol sec-butyl alcohol ($C_4H_{10}O$) and 0.1 mol phosphorus pentasulfide (P_2S_5) were mixed together and stirred at the room temperature for 3 h. 0.5 mol of NaOH was added into the system by every 20 min during this period. Then, the obtained product and bismuth nitrate ($Bi(NO_3)_3 \cdot 5H_2O$) were dissolved in deionized water and DMF, respectively. Bismuth (III) dialkyldithiophosphate complex ($Bi[S_2P(OC_4H_9)_2]_3$) was finally precipitated by mixing the two solutions with stirring.

2.2. Preparation of Bi_2S_3 Nanorods. 1.5 g of clean and dry $Bi[S_2P(OC_4H_9)_2]_3$ was dissolved in 16 mL of deionized water and was transferred into a teflon-liner autoclave of 20 mL capacity, maintained constantly at 180°C for 12 h. After the reaction, the mixture was cooled naturally to room temperature, and the precipitate was filtered, washed with water and absolute ethanol for several times, and dried in air for characterization.

2.3. Preparation of Bi_2S_3/TiO_2 Heterojunctions. Bi_2S_3/TiO_2 heterojunction was prepared by two different methods. One is designed as a physical way, in which the two constituents (as-prepared Bi_2S_3 and commercial TiO_2 -P25) were directly mixed together with different concentrations (1–20 wt. % for Bi_2S_3) and ground for about 5 min, and the other is designed as a chemical way, carried out by adding commercial TiO_2 -P25 into the reaction system during the preparation of Bi_2S_3 .

2.4. Photocatalytic Experiments. The promotion effect of asprepared samples on the photocatalytic efficiency of TiO₂ was evaluated by measuring the degradation of MO under visible irradiation (500 W Xe lamp), using as-prepared Bi₂S₃/TiO₂ heterojunction as the catalyst. A cut filter (ZJB 420) was inserted between the Xenon lamp and reactor to eliminate ultraviolet light, when the experiments were performed under visible light irradiation. In a typical experiment, 0.2 g of Bi₂S₃/TiO₂ heterojunction was dispersed in 400 mL of methyl orange (MO, $20 \text{ mg} \cdot \text{L}^{-1}$) solution, with a 300-W high pressure Hg lamp providing irradiation with a wavelength centered at 365 nm and an air flow at the rate of $10 \text{ mL} \cdot \text{min}^{-1}$. The actual effect of photocatalytic activity by chemical reaction was studied by maintaining the solution in dark for 1h before irradiation to reach the balance between adsorption and desorption. At given irradiation time intervals, the samples (5 mL) were taken out every 5 min and analyzed by UV-Vis spectrophotometer. The measure of the maximum absorbance was taken at 465 nm. The percentage of degradation is calculated via the formula $(1 - A_i/A_0)$, where A_0 is the absorbance of original MO solution after being maintained in dark for 1 h before irradiation, and A_i is the absorbance of MO solution measured every 5 min during the process of photodegradation.

2.5. Characterization. The X-ray diffraction patterns (XRD) were recorded on a Bruker D8 Advanced X-ray diffractometer using Cu K α radiation ($\lambda = 0.1542$ nm) with the range of the diffraction angle of $2\theta = 15 \sim 75^{\circ}$. Energy dispersion X-ray spectra (EDS) were performed with a GENESIS 2000 X-ray energy spectrometer (EDAX). Transmission electron microscopic (TEM) and scanning electron microscopic (SEM) images were carried out on a JEM-2100 microscope (JEOL) and JSM-6380LV scanning electron microscope, respectively. Ruili 1100 spectrophotometer was used to record the UV-Visible absorption spectra of the as-prepared samples.

3. Results and Discussion

3.1. XRD and EDS Analyses of Bi_2S_3 . Figure 1(a) shows the XRD patterns of the samples obtained at different temperatures. The main diffraction peaks are labeled, and all the reflections can be indexed to an orthorhombic phase of Bi_2S_3 (JCPDS Files, No.17-320). No impurities such as Bi_2O_3 , Bi and S are detected. Obviously, the shapes of the diffraction peaks indicate that the product should be well crystallized at 180°C. Therefore, the purity and composition of the sample obtained at 180°C are reflected by EDS analysis. The detected peaks in the EDS spectrum, shown in Figure 1(b), are assigned to Bi, S, C, and O, implying that there are no obvious impurities except trace amount of CO_2 and O_2 absorbed on the surface of the sample. Quantification of the EDS peaks gives the atomic ratio of Bi : S as 56.48 : 34.76 which is nearly consistent with the given formula of Bi_2S_3 .

3.2. SEM and TEM Images of Bi_2S_3 . The morphology of asprepared sample obtained at 180°C is revealed by SEM and TEM images, and the results are shown in Figure 2. The product mainly consists of many short rods with an average length of ca. 400 nm and a diameter of ca. 50 nm. The typical HRTEM image (Figure 2(c)) shows that the crystal lattice fringes, with an average neighboring distance of 0.42 nm, correspond to the (2 2 0) crystal plane of orthorhombicstructured Bi_2S_3 , indicating as-prepared Bi_2S_3 nanorods grow along the [0 0 1] direction.

3.3. TEM Images of Pure TiO₂ and Bi_2S_3 (3 wt.%)/TiO₂ Heterojunctions. Figure 3 shows the TEM images of the pure commercial TiO₂ (Figure 3(a)), Bi_2S_3 (3 wt.%)/TiO₂ heterojunctions prepared, respectively, by a physical way (Figure 3(b)) and a chemical way (Figure 3(c)). It is obviously observed that the pure TiO₂ was assembled particles with smooth borderlines, and the heterojunction contained TiO₂ particles and as-prepared Bi_2S_3 nanorods, whether Bi_2S_3 introduced by a physical way or a chemical way. The only difference is that the chemically introduced Bi_2S_3 nanorods seemed to be growing on the surface of the TiO₂ particles.

3.4. Photocatalytic Activity. The photocatalytic activity of the Bi_2S_3/TiO_2 heterojunction under visible irradiation is showed in Figure 4(a) (prepared by a physical way) and Figure 4(b) (prepared by a chemical way). It can be observed from Figure 4(a) that when Bi_2S_3 was introduced

FIGURE 1: (a) XRD patterns of as-prepared samples at different temperatures; (b) EDS spectrum of the sample obtained at 180°C.

FIGURE 2: (a) and (b) SEM and TEM images of as-prepared sample obtained at 180°C; (c) the HRTEM image taken from an individual Bi_2S_3 nanorod and its FFTs (inset).

FIGURE 3: TEM images of pure TiO_2 (a) and Bi_2S_3/TiO_2 heterojunctions prepared by different methods: (b) a physical way; (c) a chemical way.

FIGURE 4: Degradation efficiency of MO for Bi_2S_3/TiO_2 heterojunctions under visible irradiation: (a) prepared by a physical way; (b) prepared by a chemical way.

by a physical way, all samples exhibited a higher efficiency than that of the pure TiO₂, and the catalytic efficiency of the heterojunction increased with increasing the proportion of Bi_2S_3 from 1 wt.% to 20 wt.%. This indicates that as-prepared Bi_2S_3 nanorods introduced by a physical way have an indubitable promotional effect on the photocatalytic activity of TiO₂. When the Bi_2S_3 was introduced by a chemical way, the Bi_2S_3/TiO_2 heterojunction also showed a better efficiency than that of the pure TiO₂ as the proportion of Bi_2S_3 was in the range of 1 wt.% to 10 wt.%. However, further increasing Bi_2S_3 till 15 wt.% and 20 wt.% caused the catalytic efficiency to be decreased instead. Above all, the chemical introduced Bi_2S_3 with a proportion of 3 wt.% most significantly improved the catalytic efficiency of TiO₂ under visible irradiation.

3.5. Mechanism. Bi_2S_3 was able to efficiently improve the photocatalytic performance of TiO_2 mainly because it has a narrower bandgap than that of TiO_2 (1.3 eV and 3.2 eV, resp.). When the two semiconductors get in contact, the photo-generated electrons in conduction band (CB) of TiO_2 will transfer to valence band (VB) of Bi_2S_3 first, but not to recombine with the photo-generated holes in VB of TiO_2 , as the energy level of VB of Bi_2S_3 is located between those of the VB and CB of TiO_2 , as shown in Figure 5. In addition, a small number of electrons would further transfer to the higher CB of Bi_2S_3 after being excited by UV irradiation. Consequently, more and more positive holes would be left and take part in the reactions of oxidizing OH^- and H_2O into hydroxyl radical (*OH) which is finally responsible for the degradation of pollutants.

However, excess Bi_2S_3 will lead to a decrease in the catalytic efficiency of TiO_2 , when Bi_2S_3 was introduced by

FIGURE 5: Energetic diagrams of Bi₂S₃/TiO₂ heterojunction.

a chemical way, it never happened when Bi_2S_3 was introduced by a physical way. The most likely explanation can be elaborated from the structure of the material as follows. Originally, adding more Bi_2S_3 would bring an increase of the probability of interparticle collisions which is beneficial for the improvement of the degradation efficiency. After that, the two constituents— Bi_2S_3 and TiO_2 —were separated (Figure 3(b)) in the heterojunction prepared by a physical way. That is why the catalytic efficiency of the physically prepared Bi_2S_3/TiO_2 heterojunction increased with increasing the proportion of Bi_2S_3 . But if the photocatalyst was prepared chemically, some active points on the surface of TiO_2 might be covered by excess Bi_2S_3 and lose their catalytic activity, since Bi_2S_3 nanorods were growing on the surface of TiO_2 particles (Figure 3(c)), and Bi_2S_3 itself has few effects on the degradation of MO (Figure 4(a)). That is why the chemically prepared heterojunction with too much Bi_2S_3 will show a decreasing efficiency. In fact, it can be observed from Figures 4(a) and 4(b) that in the case of a small amount of Bi_2S_3 added, the chemically prepared photo-catalyst exhibits a higher efficiency than that prepared by a physical way, and vice versa.

So far, some researchers have studied the photocatalytic activity of Bi_2S_3/TiO_2 heterojunction, but there are few reports related to its photocatalytic activity using MO solution as the target pollutant. Compared with the reported value [8], although the final efficiency is very close, less Bi_2S_3 (3 wt.%) is needed than that (10 wt.%) in their work. It can be concluded that the as-prepared Bi_2S_3 in our study has an enhanced effect on the promotion of the photocatalytic activity of TiO_2 mainly due to its different preparation method.

4. Conclusions

Large-scale uniform Bi_2S_3 nanorods were synthesized by a hydrothermal treatment, using $Bi[S_2P(C_4H_9O)_2]_3$ as a singlesource precursor. Results of photocatalytic experiments showed that a small amount of as-prepared Bi_2S_3 would significantly improve the photocatalytic activity of nano-TiO₂ under visible irradiation, whether Bi_2S_3 is introduced by a physical way or a chemical way. After that, excess Bi_2S_3 will make the catalytic efficiency of TiO₂ decreased when Bi_2S_3 was introduced by a chemical way, but it never happened when Bi_2S_3 was introduced by a physical way, mainly due to the different structures of Bi_2S_3/TiO_2 heterojunction resulted from different preparation methods. Even so, among all asprepared samples, the TiO₂-based photo-catalyst prepared chemically with 3 wt.% Bi_2S_3 exhibits the best catalyst efficiency under visible irradiation.

Acknowledgments

The authors are grateful for the financial support provided by the Universities Natural Science Research Project of Jiangsu Province (11KJD430004) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

- J. Lu, Q. F. Han, X. J. Yang, L. D. Lu, and X. Wang, "Preparation of Bi₂S₃ nanorods via a hydrothermal approach," *Materials Letters*, vol. 61, no. 16, pp. 3425–3428, 2007.
- [2] A. Q. Ma, Y. J. Wei, Z. F. Zhou et al., "Preparation Bi₂S₃-TiO₂ heterojunction/polymer fiber composites and its photocatalytic degradation of methylene blue under Xe lamp irradiation," *Polymer Degradation and Stability*, vol. 97, pp. 125–131, 2012.
- [3] X. Li, H. L. Liu, D. L. Luo et al., "Adsorption of CO_2 on heterostructure $CdS(Bi_2S_3)/TiO_2$ nanotube photocatalysts and their photocatalytiv activities in the reduction of CO_2 to

methanol under visible light irradiation," *Chemical Engineering Journal*, vol. 180, pp. 151–158, 2012.

- [4] Y. Huang, G. Xie, S. P. Chen, and S. L. Gao, "Preparation and photocatalytic activity of Sb₂S₃/Bi₂S₃ doped TiO₂ from complex precursor via gel-hydrothermal treatment," *Journal of Solid State Chemistry*, vol. 184, no. 3, pp. 502–508, 2011.
- [5] R. Brahimi, Y. Bessekhouad, A. Bouguelia, and M. Trari, "Visible light induced hydrogen evolution over the heterosystem Bi₂S₃/TiO₂," *Catalysis Today*, vol. 122, no. 1-2, pp. 62–65, 2007.
- [6] J. Kim and M. Kang, "High photocatalytic hydrogen production over the band gap-tuned urchin-like Bi₂S₃-loaded TiO₂ composites system," *International Journal of Hydrogen Energy*, vol. 37, pp. 8249–8256, 2012.
- [7] L. M. Peter, K. G. U. Wijayantha, D. J. Riley, and J. P. Waggett, "Band-edge tuning in self-assembled layers of Bi₂S₃ nanoparticles used to photosensitize nanocrystalline TiO₂," *Journal of Physical Chemistry B*, vol. 107, no. 33, pp. 8378–8381, 2003.
- [8] Y. Bessekhouad, D. Robert, and J. V. Weber, "Bi₂S₃/TiO₂ and CdS/TiO₂ heterojunctions as an available configuration for photocatalytic degradation of organic pollutant," *Journal of Photochemistry and Photobiology A*, vol. 163, no. 3, pp. 569–580, 2004.
- [9] J. Lu, Q. F. Han, and Z. S. Wang, "Synthesis of TiO₂/Bi₂S₃ heterojunction with a nuclear-shell structure and its high photocatalytic activity," *Materials Research Bulletin*, vol. 47, pp. 1621–1624, 2012.
- [10] M. W. Shao, M. S. Mo, Y. Cui, G. Chen, and Y. T. Qian, "The effect of agitation states on hydrothermal synthesis of Bi₂S₃ nanorods," *Journal of Crystal Growth*, vol. 233, no. 4, pp. 799– 802, 2001.
- [11] T. Thongtem, S. Jattukul, C. Pilapong, and S. Thongtem, "Hydroxyethyl cellulose-assisted hydrothermal synthesis of Bi₂S₃ urchin-like colonies," *Current Applied Physics*, vol. 12, pp. 23– 30, 2012.
- [12] C. J. Tang, C. Q. Wang, F. J. Su et al., "Controlled synthesis of urchin-like Bi₂S₃ via hydrothermal method," *Solid State Sciences*, vol. 12, no. 8, pp. 1352–1356, 2010.
- [13] A. Phuruangrat, S. Thongtem, and T. Thongtem, "Controlling morphologies of Bi₂S₃ nanostructures synthesized by glycothermal method," *Materials Letters*, vol. 72, pp. 104–106, 2012.
- [14] Y. Wang, J. F. Huang, L. Y. Cao, H. Zhu, H. Y. He, and J. P. Wu, "Preparation of Bi₂S₃ thin films with a nanoleaf structure by electrodeposition method," *Applied Surface Science*, vol. 255, no. 17, pp. 7749–7752, 2009.
- [15] C. Gao, H. L. Shen, L. Sun, and Z. Shen, "Chemical bath deposition of Bi₂S₃ films by a novel deposition system," *Applied Surface Science*, vol. 257, no. 17, pp. 7529–7533, 2011.
- [16] A. U. Ubale, "Effect of complexing agent on growth process and properties of nanostructured Bi₂S₃ thin films deposited by chemical bath deposition method," *Materials Chemistry and Physics*, vol. 121, no. 3, pp. 555–560, 2010.
- [17] S. Y. Wang and Y. W. Du, "Preparation of nanocrystalline bismuth sulfide thin films by asynchronous-pulse ultrasonic spray pyrolysis technique," *Journal of Crystal Growth*, vol. 236, no. 4, pp. 627–634, 2002.
- [18] J. L. Wu, F. Qin, G. Cheng et al., "Large-scale synthesis of bismuth sulfide nanorods by microwave irradiation," *Journal of Alloys and Compounds*, vol. 509, no. 5, pp. 2116–2126, 2011.
- [19] X. H. Liao, H. Wang, J. J. Zhu, and H. Y. Chen, "Preparation of Bi₂S₃ nanorods by microwave irradiation," *Materials Research Bulletin*, vol. 36, no. 13-14, pp. 2339–2346, 2001.

- [20] Y. Jiang, Y. J. Zhu, and Z. L. Xu, "Rapid synthesis of Bi₂S₃ nanocrystals with different morphologies by microwave heating," *Materials Letters*, vol. 60, no. 17-18, pp. 2294–2298, 2006.
- [21] T. Thongtem, A. Phuruangrat, S. Wannapop, and S. Thongtem, "Characterization of Bi₂S₃ with different morphologies synthesized using microwave radiation," *Materials Letters*, vol. 64, no. 2, pp. 122–124, 2010.
- [22] H. Zhang, J. Huang, X. G. Zhou, and X. H. Zhong, "Single-crystal Bi₂S₃ nanosheets growing via attachment-recrystallization of nanorods," *Inorganic Chemistry*, vol. 50, pp. 7729–7734, 2011.
- [23] Q. F. Han, J. Chen, X. J. Yang, L. D. Lu, and X. Wang, "Preparation of uniform Bi₂S₃ nanorods using xanthate complexes of bismuth (III)," *Journal of Physical Chemistry C*, vol. 111, no. 38, pp. 14072–14077, 2007.
- [24] A. K. Jain, V. Sharma, R. Bohra et al., "Synthesis and characterization of methylbismuth(III) complexes containing dithio ligands: 2. Crystal and molecular structure of [MeBiCl(S₂CNEt₂)] and transformation of some [MeBi(S₂CNR'₂)₂] to Bi₂S₃," *Journal* of Organometallic Chemistry, vol. 691, no. 19, pp. 4128–4134, 2006.
- [25] G. Xie, Z. P. Qiao, M. H. Zeng, X. M. Chen, and S. L. Gao, "A single-source approach to Bi₂S₃ and Sb₂S₃ nanorods via a hydrothermal treatment," *Crystal Growth and Design*, vol. 4, no. 3, pp. 513–516, 2004.
- [26] L. Tian, H. Y. Tan, and J. J. Vittal, "Morphology-controlled synthesis of Bi₂S₃ nanomaterials via single-and multiple-source approaches," *Crystal Growth and Design*, vol. 8, no. 2, pp. 734– 738, 2008.
- [27] J. Waters, D. Crouch, J. Raftery, and P. O'Brien, "Deposition of bismuth chalcogenide thin films using novel single-source precursors by metal-organic chemical vapor deposition," *Chemistry of Materials*, vol. 16, no. 17, pp. 3289–3298, 2004.
- [28] W. J. Lou, M. Chen, X. B. Wang, and W. M. Liu, "Novel singlesource precursors approach to prepare highly uniform Bi₂S₃ and Sb₂S₃ nanorods via a solvothermal treatment," *Chemistry* of Materials, vol. 19, no. 4, pp. 872–878, 2007.

Smart Materials Research

Research International

Journal of Nanoscience

Scientifica

Hindarol Publishing Con

Journal of Crystallography

The Scientific

World Journal

