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Three different chemical ratios of PtxCo1−x thin films were grown on p-type native oxide Si (100) by Magneto Sputtering System
with cosputtering technique at 350∘C temperature to investigate electrical prosperities. X-ray photoelectron spectroscopy analysis
technique was used to specify chemical ratios of these films. The current-voltage (I-V) measurements of metal-semiconductor
(MS) Schottky diodes were carried out at room temperature. From the I-V analysis of the samples, ideality factor (n), barrier height
(𝜙), and contact resistance values were determined by using thermionic emission (TE) theory. Some important parameters such
as barrier height, ideality factor, and serial resistance were calculated from the I-V characteristics based on thermionic emission
mechanism.The ideality factors of the samples were not much greater than unity, and the serial resistances of the samples were also
very low.

1. Introduction

Thin films have nowadays very wide usage area in technolog-
ical applications [1–6]. They show very distinct differenence
from bulk films such as Curie temperature and the electrical
properties. They get more and more important with the
preparation systems progress. In particular after Ultra High
Vacuum (UHV) systems became popular, they have been
prepared with good quality and cleanness [1]. There are
several preparation techniques to meet user’s need. Some of
them for UHV systems are magnetron sputtering deposition,
molecular beam epitaxial and e-beam evaporation, and pulse
laser deposition [7]. Due to the advantages of the prepa-
ration techniques, thin films started being used widely in
technological applications such as optics [2], optoelectronics
[3], electronics [4], magnetic applications [5], and sensors
[6]. Firstly, thin films were prepared as a single layer with
monoelement structure. After a little while due to some
technological requirements, they started being prepared as
multilayer structures and alloy forms with two or more
elements. Multilayer forms started to be popular after Giant

Magneto Resistance (GMR) [8, 9] effect and Tunneling
Magneto Resistance (TMR) [10] effect were observed in
the 1980s. The other thin film form is alloy film which
started solving some of technological problems, and they
gained more importance when compared to single layer
films. When two or more elements compose themselves to
be alloys, generally every one of them loses some of its
own properties and gains new properties. PtCo alloys are
very good examples to clarify this situation due to magnetic
properties [11]. Platinum is naturally nonmagneticmaterial so
it has not got any magnetic moment [12]. When it composes
its with ferromagnetic cobalt, it gains some net magnetic
moment and starts behaving as a magnetic material as a
paramagnetic and also changes the magnetic properties of
cobalt [13]. For example, the magnetocrystalline anisotropy
is a key parameter for data storage media. Pt affects the
magnetocrystalline anisotropy of cobalt. The magnetocrys-
talline anisotropy constant of Cobalt (410 KJ⋅m−3) [14] is
ten times smaller than the magnetocrystalline anisotropy
constant of PtCo (4,9MJ⋅m−3) [14]. SmCo

5
are used now for

data storage media, and the magnetocrystalline anisotropy
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constant PtCo is very close to SmCo
5
’s (17,2MJ⋅m−3) [14],

so PtCo alloy still is an active research area and the one of
good candidates is for next generation data storage media
[15]. Besides their magnetic properties, PtCo alloys also have
catalytic properties [16–20]. Another most important point
is that they can be prepared easily in different chemical
ratios, and their phase is very stable [21]. We believe that if
these structures come into use in next generation magnetic
data storage media, their electrical properties may be gained
significantly.

The other hand semiconductor base materials exhibit an
interesting combination of magnetic and electrical proper-
ties, which are essential for future generation spintronics
device applications [22]. Two of these electrical properties are
Schottky barriers (SB) and tunneling diode.

They can be used in microwave detector diodes [23].
Schottky diodes with low barrier height have some applica-
tions in devices operating as infrared detectors and imaging
sensors at high frequencies [24, 25]. Schottky Metal (SM)
contacts have an important role in electronic technology [26,
27]. Metal-semiconductor (MS) contact is one of the most
widely used rectifying contacts in electronic industry [28, 29].
Electronic properties of a Schottky diode are characterized
by its series resistance, barrier height, and ideality factor
parameters [30, 31]. Schottky barrier height, and other char-
acteristic parameters can affect device performance, stability
and reliability [32–35]. Electrical properties of PtCo alloys
have not been investigated so far. So in this study, we focused
on surface and volume resistivity of different stoichiometry
of PtCo alloys films. In order to realize this goal, we prepared
three different chemical ratios of Pt

𝑥
Co
1−𝑥

(𝑥 = 0.2, 0.5,
0.7) alloy films with magnetron sputtering technique at UHV
conditions. X-ray photoelectron spectroscopy was used to
determine the chemical ratio of the films and the deposition
rate of Pt and Co.

In the scope of this work, the Pt
𝑥
Co
1−𝑥

(𝑥 = 0.2, 0.5,
0.7) alloy films were prepared for the new generation data
storage and catalytic material by Magneto Sputtering System.
Theywere examinedwith current-voltage (I-V)measurement
techniques.Thismethod is a reliable tool for investigating the
behaviors of electrical properties and for optimizing metal-
semiconductor and magnetic-semiconductor materials.

2. Experiments

All the experiments were performed in a cluster Ultra High
Vacuum (UHV) chamber. The chamber is combined with
magnetron sputtering deposition chamber and analytical
chamber. There is a load-lock chamber between them. PtCo
alloy films were grown on native p-type Si (100) substrate
by magnetron sputtering deposition technique with base
pressure <1 ×10−8mbar. All the substrates were cleaned with
ethanol and methanol baths before being transferred into
UHV conditions. Then they were subjected to annealing
process at 600∘C for 30 minutes by a pyrolytic boron nitride
(PBN) heater which is located under the substrate at the
sample holder. It has the capability of annealing up to
1200∘C. The sample holder is cooled by chilled water to

hold the sample temperature for different processes. For
deposition, Ar process gas (6N purity) was exposed to
the magnetron sputtering chamber so the base pressure
level increased to 1.3 × 10−3–1.4 × 10−4mbar. In order
to prepare Pt

𝑥
Co
1−𝑥

(𝑥: 0.2, 0.5, 0.7) alloy films, the Pt
(99,99% purity) and Cobalt (99,98% purity) elemental targets
were used. Their sizes are three inches to provide uniform
deposition surface. The distance between the substrate and
target was 100mm and always kept for all growth process.
Thickness calibration of the films was conducted with Quartz
Crystal Monitoring (QCM) during deposition in situ. X-
ray photoelectron spectroscopy (XPS) was used for QCM
calibration. Before synthesizing PtCo alloy films, both Pt and
Co deposition ratios were calculated. Pt

𝑥
Co
1−𝑥

(𝑥: 0.2, 0.5,
0.7) alloy films were grown using cosputtering technique.The
number of sequences was kept 100 for all samples; on the
other hand, the Pt and Co deposition time was calculated
depending on the chemical ratio of Pt

𝑥
Co
1−𝑥

(𝑥: 0.2, 0.5,
0.7) alloy films. The power applied to Co target was 30
Watt and the corresponding deposition rate was 0.3 Å/sec.
The Pt deposition rate was 0.1 Å/sec with 2 Watt. The Pt
and Co targets were operated at the same time, and the
temperature was held at 350∘C. The films thicknesses were
300 Å.

The current-voltage (I-V) and resistivity of the thin films
were studied using a four-point probe measurement with
the Lucas Signatone system. I-V and surface resistance were
measured using a Keithley 2400 Source-Meter in a four-point
probe technique and converted to the surface resistivity. The
I-V and surface resistance measurements were carried out at
room temperature.

3. Result and Discussion

XPS was used to determine the selected chemical ratios of
alloy films in situ. Figure 1 shows survey XPS spectra for
Pt
0.5
Co
0.5

and Pt
0.7
Co
0.3
. High resolution XPS spectra for

the major photoemission Co 2p and Pt 4f regions were
also taken (Figure 2) for analysis in commercial software
CasaXPS 2.3.14. We used the Shirley background function
to fit and analyze the peaks. The Voigt function identifying
the photoemission nature was used to calculate the peak area
of Co and Pt. The calculated peak areas of Co and Pt were
divided by the atomic sensitivity factors (ASFs)which depend
on both elemental properties and XPS setup (3.59 for Pt 4f,
and 5.75 for Co 2p).The calculated Pt toCo ratios within alloy
films are 20 : 80, 50 : 50, and 70 : 30.

Beside these analyses, the XPS spectra were given both Pt
peaks and Co peaks from both their pure and the Pt

0.6
Co
0.4

films (Figure 3). Because of their alloy form, both Pt and
Co peaks came from Pt

0.6
Co
0.4

films; they are shifted from
the low binding energy value to the high binding energy
value. Their peak shape also expanded due to their chemical
bonding.

The typical forwarded bias voltage (V) and current (I)
characteristics obtained from the samples are shown in
Figure 4. I-V curves of the samples are linear at low bias
voltage and nonlinear at high bias voltage. All the curves
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Figure 1: XPS survey spectra from the alloy surface of the Pt
0.2
Co
0.8
, Pt
0.5
Co
0.5
, and Pt

0.7
Co
0.3

films.
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Figure 2: XPS spectrum from Pt
0.5
Co
0.5

for both Pt and Co major peaks. The ratios of peak areas under the Pt 4f and Co 2p regions provide
the ratio of Pt and Co atoms.

show an intersection at low forwarded biases (about 0.1-
0.2 V). The I-V curvature quickly (at low forward bias)
becomes dominant with a resistance from contact wires or
bulk resistance of the samples. If the current passes through
MS Schottky diode at a forward bias voltage (3𝑘𝑇/𝑞 ≤ 𝑉), a
high resistive potential barrier created by grains is considered
in these systems [36]. The observed results require a serial
resistance [37]. Serial or parasitic resistance,𝑅

𝑠
, includes bulk

and contact resistances.The I-V results deviated from ideality
can be explained by thermionic emission theory with a serial
resistance. The TE model considers that I-V characteristic of
an MS type Schottky diode is given as follows [38]:

𝐼 = 𝐼
𝑜
exp(
𝑞 (𝑉 − 𝐼𝑅

𝑠
)

𝑛𝑘𝑇
)[1 − exp(−

𝑞 (𝑉 − 𝐼𝑅
𝑠
)

𝑘𝑇
)] ,

(1)

where 𝑞 is electron charge, 𝑘 is Boltzmann constant, 𝑇 is
absolute temperature, 𝑛 is ideality factor (close to 1), and
finally 𝐼

𝑜
is saturation current. 𝑉 − 𝐼𝑅

𝑠
is voltage drop across

the diode. The saturation current can be written as

𝐼
𝑜
= 𝐴𝐴

∗
𝑇
2 exp(−

𝑞𝜙
𝑏

𝑘𝑇
) , (2)

where 𝜙
𝑏
, 𝐴, and 𝐴∗ are apparent barrier height, effective

contact area, and Richardson constant, respectively. All these
physical parameters have an importance for technological
application. Richardson constant is equal to 32Acm−2K−2
for p-type Si [39]. The saturation current can be obtained
from an extrapolation to current axis in I-V plot at zero bias
voltage. At relatively high forward bias voltages, the parasitic
or serial resistance goes to a constant value. In general, low
serial resistance is required for a device application [40, 41].
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Figure 3: The comparison of both Pt 4f and Co 2p peaks that came from both their pure films and Pt
0.6
Co
0.4

films.
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Figure 4: Current-voltage graph and inset: 𝑑𝑉/𝑑(ln 𝐼) − 𝐼 plot.

The series resistance, ideality factor, and barrier height are
determined by using Cheung’s functions as follows [42]:

𝑑𝑉

𝑑 (ln 𝐼)
= 𝐼𝑅
𝑠
+
𝑛𝑘𝑇

𝑞
, (3)

𝐻(𝐼) = 𝑉 (𝐼) −
𝑛𝑘𝑇

𝑞
ln( 𝐼
𝐴𝐴
∗
𝑇
2
) , (4)

and another form of𝐻(𝐼) function is given as follows:

𝐻(𝐼) = 𝑛𝜙
𝑏
+ 𝐼𝑅
𝑠
. (5)

The 𝑑𝑉/𝑑(ln 𝐼) − 𝐼 plot is shown in inset of Figure 4. All
curves are straight lines with low and different slopes. The
ideality factor can be obtained by using (3) from the slope
of the linear curves. The obtained values of the ideality factor
are given in Table 1. It is clear from the table that the values
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Table 1: I-V characteristics parameters of the samples.

𝑅
𝑠
(Ω) 𝑛 𝜙

𝑏
(eV)

𝑥 = 0.2 3.89 1.32 0.26
𝑥 = 0.5 6.64 1.83 0.27
𝑥 = 0.7 4.60 1.03 0.25

of the ideality factor for the samples are really low. The low
values (∼1) of the ideality factormay result fromhomogeneity
of film thickness [43], series resistance effect, low interface
state, and the interface charges.

The simple analysis of (5) yields 𝑛 and 𝜙
𝑏
parameters.The

change in𝑅
𝑠
,n, and𝜙

𝑏
with composition at room temperature

is shown in Table 1. It is clear from the data obtained
from Figure 4 that the parameters have strong composition
dependence.

4. Conclusion

This work indicates that coating of p-type Si (100) with
Pt
𝑥
Co
1−𝑥

alloys thin films can be prepared by Magnetron
Sputtering Deposition at UHV condition. XPS was used for
three different goals. One was to determine the deposition
rate of cobalt and platinum.The other one was determination
of the chemical ratio of PtCo alloy films. The last one
was that the PtCo alloy forms were proved by XPS results.
The performance and reliability of metal-semiconductor or
metal-insulator-semiconductor diodes depend on barrier
height, properties of interface layer, and𝑅

𝑠
. I-V characteristics

of the samples were investigated at room temperature. The
nonideal type I-V behavior observed was attributed to a
serial resistance in the MS type Schottky diode. The serial
resistances were found to be 3.89Ω, 6.64Ω and 4.60Ω for
𝑥 = 0.2, 0.5, and 0.7, respectively.
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