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Nanomagnetically labeled immunoassays have been demonstrated to be promisingly applied in clinical diagnosis. In this work, by
using antibody-functionalized magnetic nanoparticles and a high-temperature superconducting quantum interference device ac
magnetosusceptometer, the assay properties for vascular endothelial growth factor (VEGF) in serum are investigated. By utilizing
the assay method so-called immunomagnetic reduction, the properties of assaying VEGF are explored. In addition, the VEGF
concentrations in serum samples of normal people and patients with either colorectal or hepatocellular cancer are detected. The
experimental results show that the low-detection limit for assaying VEGF is 10 pg/mL, which is much lower than the clinical cut-off
VEGF concentration of 50 pg/mL for diagnosingmalignancy. Besides, there are no significant interference effects on assayingVEGF
from hemoglobin, conjugated bilirubin, and triglyceride. The VEGF concentrations in serum samples donated by normal people
and patients with hepatocellular carcinoma or colorectal cancer are detected. A clear difference in VEGF concentrations between
these two groups is found. These results reveal the feasibility of applying nanomagnetically labeled immunoassay to clinics.

1. Introduction

Early-stage diagnosis is the trend for in vitro diagnosis.
For immunoassay, the important requirements with early-
stage diagnosis are the abilities to assay the ultra-low-
concentration biomarkers. One of the categories in the early-
stage immunoassay is the screening of malignancy. The
biomarker for malignancy is vascular endothelial growth
factor (VEGF) [1–4]. In clinics, the cut-off concentration for
VEGF is 50 pg/mL. This means the VEGF concentration in
the noncancer population is lower than 50 pg/mL [5, 6].Thus,
the low-detection limit of assay kits for VEGFwould be better
to be lower than 5 pg/mL, or even down to sub-pg/mL.

One popular method to assay VEGF is the so-called
enzyme-linked immunosorbent assay (ELISA) [7–9]. How-
ever, it is difficult to detect VEGF at low concentrations, such
as tens of pg/mL, using ELISA. Further, it requires much
time and skill.The results from ELISA tend to be confounded
by hemolysis or jaundice, and these phenomena are very
common in the blood of cancer patients [10]. Hence, ELISA
is usually used to diagnose mild to serve malignancy, not for
early-stage diagnosis.

Some of the coauthors developed assay technologies
for quantitatively detecting ultra-low-concentration bio-
molecules [11, 12]. This technology is referred to as SQUID-
based immunomagnetic reduction (IMR), where SQUID is
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the abbreviation for superconducting quantum interference
device. It was demonstrated that the low-detection limit of
SQUID-based IMR to assay 𝛽-amyloids is around pg/mL
[13, 14]. Thus, it can hopefully be applied to SQUID-based
IMR for the quantitative detection of ultra-low-concentration
VEGF. This motivates us to characterize the assay of VEGF
using SQUID-based IMR.

The detailed physical mechanism of IMR is reported in
[15]. Instead of tedious theoretical discussion, phenomeno-
logical explanations for IMR are given here. IMR is such
a method as assaying target molecules via measuring the
reduction in the mixed-frequency magnetic susceptibility
of the magnetic reagent owing to the association between
magnetic nanoparticles and target molecules, as illustrated in
Figures 1(a) and 1(b). Under external multiple ac magnetic
fields, magnetic nanoparticles oscillate with the multiple ac
magnetic fields via magnetic interaction. Thus, the reagent
under external multiple ac magnetic fields shows a magnetic
property, called mixed-frequency ac magnetic susceptibility
𝜒ac, as illustrated in Figure 1(a). Via the antibodies on the
outmost shell, magnetic nanoparticles associate with and
magnetically label biotargets. With the association, magnetic
nanoparticles become larger or clustered, as schematically
shown in Figure 1(b). The response of these larger mag-
netic nanoparticles to external multiple ac magnetic fields
becomes much less than that of originally individual mag-
netic nanoparticles. Thus, the 𝜒ac of the magnetic reagent is
reduced due to the association between magnetic nanoparti-
cles and biotargets. In principle, as the amounts of biotargets
are reduced, fewer magnetic nanoparticles become larger or
clustered. The reduction in 𝜒ac of the reagent is depressed.
Once the reduction in 𝜒ac is depressed to be lower than the
noises of 𝜒ac of the reagent, the assay result becomes negative.
To achieve highly sensitive detections, it is preferred to utilize
a detection module with low noise and high sensitivity to 𝜒ac
signals. This is why SQUID is used for IMR because it is a
more sensitive sensor of magnetic signals.

In this work, SQUID-based IMR is applied to explore
the low-detection limit for assaying VEGF. In addition, the
interferences by several materials such as hemoglobin, biliru-
bin, and triglyceride to the assays of VEGF are investigated
for SQUID-based IMR. These results are compared with
those done via ELISA. Finally, the VEGF concentrations in
human serum from patients with hepatocellular carcinoma
or colorectal cancer, as well as normal people, are detected
using SQUID-based IMR.

2. Materials and Methods

The magnetic reagent used here is magnetic nanoparticles,
which are biofunctionalized with antibodies against VEGF
(anti-VEGF), and dispersed in pH 7.4 phosphate buffered
saline solution (MF-VEG-0060, MagQu). The magnetic core
of the particles is Fe

3
O
4
. The Fe

3
O
4
cores are individually

enveloped with dextran. The size distribution of dextran-
coated Fe

3
O
4
particles was detected by dynamic laser scat-

tering (Nanotrac-150, Microtrac). The results are shown in
Figure 2(a). The mean diameter was found to be 49.7 nm.

Through chemical reactions, anti-VEGF is covalently bound
with dextran [16, 17]. By using dynamic laser scatter-
ing (Nanotrac-150, Microtrac), the diameter distribution of
the biofunctional magnetic nanoparticles was measured, as
shown in Figure 2(b). The mean diameter of the biofunc-
tionalized Fe

3
O
4
nanoparticles is 57.2 nm. The stability of

magnetic reagent stored at 2–8∘C is examined by analyzing
the time-evolutionmean value of the hydrodynamic diameter
of particles. The results are shown in Figure 3 and reveal that
the hydrodynamic diameter of particles remains unchanged
for 36 weeks. This implies that there is no agglomeration
of particles in the reagent stored at 2–8∘C for 36 weeks.
The magnetic hysteresis curve of the magnetic reagent was
measured with a vibrating samplemagnetometer (HyterMag,
MagQu), as shown in Figure 4. The saturated magnetization
of the magnetic reagent is 0.3 emu/g, corresponding to the
particle concentration of 1012 particles/mL. Besides, the
magnetic reagent shows superparamagnetism.

60𝜇L magnetic reagent was thoroughly mixed with the
60𝜇L sample solution in a glass tube. The 𝜒ac signal, 𝜒ac,𝑜,
of the mixture before the formation of immunocomplex of
VEGF-magnetic-nanoparticles was recorded using a mag-
netic immunoassay analyzer (XacPro-S, MagQu). Then, the
mixture was kept at room temperature for the formation
of VEGF-magnetic-nanoparticles, followed by recording the
𝜒ac signal, 𝜒ac,𝜙, of the mixture. It usually takes 3 hours
for finishing the formation ofVEGF-magnetic-nanoparticles.
With the measured 𝜒ac,𝑜 and 𝜒ac,𝜙, the IMR signal can be
obtained via

IMR (%) =
(𝜒ac,𝑜 − 𝜒ac,𝜙)

𝜒ac,𝑜
× 100%. (1)

For a given sample solution, the sample was divided into
three parts for the triple tests of IMR signals. With the three
individual IMR signals, the mean value and the standard
deviation of the IMR signals were calculated. To build the
characteristic curve, that is, the relationship between the
IMR signal and VEGF concentration, various amounts of
VEGF (PEP400-31-10, PeproTech) were added to the PBS
solution, followed by measuring the IMR signals for these
VEGF solutions.

As to the human serum, the 𝜒ac,𝑜 and 𝜒ac,𝜙 of the mixture
of 60𝜇L serum and 60𝜇L magnetic reagent were detected
using amagnetic immunoassay analyzer (XacPro-S,MagQu).
Thus, the IMR signals can be obtained via (1) for human
serum.

VEGF levels were detected using the Quantikine Human
VEGF-ELISA kit (R&D Systems, Minneapolis, MN) [18].
100 𝜇L of rat serum and serially diluted standard solutions
(VEGF) were added to 96-well microtiter plates precoated
with murine anti-VEGF monoclonal antibodies and incu-
bated at room temperature for 2 hours. After incubation,
200𝜇L of the secondary antibody, an enzyme-linked EGF-
specific polyclonal goat antibody, was added, and then,
incubation continued for 2 hours at room temperature.
Substrate solution was added, and the reaction continued for
30 minutes. The optical density at a 450 nm wavelength is
detected with an ELSIA reader.
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Figure 1: Illustration of the mechanism of immunomagnetic reduction (IMR).
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Figure 2: Distribution analysis for the hydrodynamic diameters of (a) dextran-coated Fe
3
O
4
nanoparticles and (b) anti-VEGF functionalized

Fe
3
O
4
nanoparticles dispersed in PBS solution.
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Figure 3: Time-evolution mean diameter of magnetic particles
biofunctionalized with anti-VEGF and dispersed in PBS solution.

3. Results and Discussion

The optical density (OD) as a function of the VEGF con-
centration detected via ELISA was characterized, as shown
with the crosses and the dashed line in Figure 5. The error
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Figure 4: Magnetic hysteresis curve of magnetic nanoparticles
functionalized with anti-VEGF and dispersed in PBS solution.

bars are the standard deviations of the triple-test signals.
It was found that OD almost remains constant as VEGF
concentration 𝜙VEGF increases from 1 pg/mL to 23.4 pg/mL.
As VEGF concentration 𝜙VEGF is higher than 46.9 pg/mL,
a significant increase in OD is observed. The low-detection
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Figure 5: VEGF concentration dependent IMR signals (dots with
the solid line) using immunomagnetic reduction (IMR) and OD
(crosses with the dashed line) using ELISA.

limit in OD can be obtained by the addition of triple standard
deviations (e.g., 3-sigma criterion) to the OD at low VEGF
concentrations. The OD at 23.4 pg/mL VEGF is 0.160, and its
standard deviation is 0.009. The low-detection limit in OD
is (0.160 + 3 × 0.009)% = 0.187%, which is very close to the
OD at 46.9 pg/mL VEGF, that is, 0.185. This implies that the
low-detection limit for assaying VEGF via ELISA is around
50 pg/mL. However, the cut-off concentration for VEGF in
clinics is 50 pg/mL. The results shown by the dashed line in
Figure 3 reveal that the ELISA is not sensitive enough to assay
VEGF for patients in early-stage malignancy.

SQUID-based IMR is applied to characterize the VEGF
concentration dependent IMR signals. The results are shown
by the dots in Figure 5. The error bar at each VEGF con-
centration is the standard deviation of the triple-test IMR
signals. Clearly, there is no difference in IMR signals (∼3.2%)
for 𝜙VEGF being 1 and 5 pg/mL. For 𝜙VEGF being 10 pg/mL,
the IMR signal (∼3.5%) definitely deviates from that of
𝜙VEGF being 1 or 5 pg/mL. The low-detection limit in IMR
signals can be obtained by adding triple standard deviations
(e.g. 3-sigma criterion) to the IMR signals at low VEGF
concentrations. According to Figure 5, the IMR signal at
5 pg/mL VEGF is 3.20%, and its standard deviation is 0.08%.
The low-detection limit in IMR signal turns to (3.20 + 3 ×
0.08)% = 3.44%., which is slightly lower than the IMR
signal at 10 pg/mL VEGF, that is, 3.46%. Therefore, the low-
detection limit for assaying VEGF using SQUID-based IMR
is 10 pg/mL, which is lower than the clinical cut-off VEGF
concentration 50 pg/mL. Hence, SQUID-based IMR would
be good for early-stage diagnosis of malignancy.

As the VEGF concentration keeps increasing from
10 pg/mL, the IMR signal also increases and becomes sat-
urated as the VEGF concentration is over 1000 pg/mL.

The VEGF concentration dependent IMR signals in Figure 3
exhibit such behavior of logistic function. Consider

IMR (%) = 𝐴 − 𝐵

1 + (𝜙VEGF/𝜙𝑜)
𝛾
+ 𝐵, (2)

where𝐴, 𝐵, 𝜙
𝑜
, and 𝛾 are fitting parameters. By fitting dots in

Figure 3 to (2),𝐴was found to be 3.05, 𝐵was 5.56, 𝜙
𝑜
equaled

98.84, and 𝛾 was 0.74. The fitting curve of (2) is plotted by
the solid curve in Figure 5. The coefficient of determination
𝑅2 between the dots and the solid line is 0.993, denoting a
high consistency between the experimental data (dots) and
the fitting curve (solid line).

Note, the value of 𝐴 in (2) corresponds to the IMR
signal at zero VEGF concentration. Theoretically, the value
of 𝐴 should be zero. However, due to noises in the mixed-
frequency ac magnetic susceptibility 𝜒ac, a nonzero IMR
signal is resulted, even if there is no VEGF molecules in the
tested sample. Hence, the value of 𝐴 in (2) is not zero. The
noises are attributed from two main factors. One factor is the
electric noise generated by the immunoanalyzer. The other
factor is referred to as bioreaction noise, which results from
the dynamic balance of the association/dissociation between
VEGF molecules and anti-VEGF functionalized magnetic
nanoparticles.

For serum, there might be interfering materials due
to hemolysis, jaundice, or hypertriglyceridemia, such as
hemoglobin (Hb), conjugated bilirubin (C-BL), or triglyc-
eride (TG). It is necessary to clarify the interference effects
of these materials on assaying VEGF. Besides, biomarkers for
other cancers like hepatocellular carcinoma (HCC) or col-
orectal cancer (CRC) are included for the interference tests.
In clinics, the biomarker for HCC is alpha-fetoprotein (AFP),
while carcinoembryonic antigen (CEA) is the biomarker
for CRC. The cut-off concentrations for these interfering
materials are listed in Table 1. When someone’s serum con-
tains a certain biomarker concentration exceeding its cut-
off value, he or she is suffering from the corresponding
disease. For example, if someone’s serum contains Hb higher
than 500𝜇g/mL, say 600𝜇g/mL, he or she is suffering from
hemolysis. Table 1 shows that the concentrations of these
interfering materials used for the interference tests are much
higher than the cut-off concentrations. For comparison, the
interference tests for VEGFwere done using ELISA and IMR,
respectively.

The 100 pg/mL VEGF solutions without or with interfer-
ing materials are used as test samples. The optical densities
(OD) for these solutions are detected using ELISA and are
plotted in Figure 6(a). The data of these ODs are listed in
Table 2. In the experiment, the sample without interfering
material (labeled with “None” in Figure 6(a)) is used as a
reference. The OD of the reference sample was observed to
be 0.31 ± 0.01. The samples with 1000 𝜇g/mL Hb, 10 𝜇g/mL
C-BL, and 2000𝜇g/mL TG show distinctly higher OD’s as
compared to that of the reference sample, while the sample
with 100 ng/mL AFP shows differentially lower OD. These
results reveal the significant interference by biomolecules of
Hb, C-BL, TG, and AFP for assaying VEGF using ELISA.
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Figure 6: Interference tests for (a) ELISA and (b) IMR by interfering materials such as Hb, C-BL, TG, AFP, and CEA.

Table 1: Clinical cut-off concentrations and used concentrations in this work for interference tests due to hemoglobin (Hb), conjugated
bilirubin (C-BL), triglyceride (TG), alpha-fetoprotein (AFP), and carcinoembryonic antigen (CEA).

Disease Hemolysis Jaundice Hypertriglyceridemia Hepatocellular carcinoma Colorectal cancer
Biomarker (as interfering material) Hb C-BL TG AFP CEA
Cut-off concentration 500𝜇g/mL 2𝜇g/mL 1500𝜇g/mL 20 ng/mL 5 ng/mL
Concentration used for interference test 1000𝜇g/mL 10 𝜇g/mL 2000𝜇g/mL 100 ng/mL 10 ng/mL

As to the interference tests for IMR, the IMR signals for
these VEGF solutions without or with interfering materials
are detected and shown in Figure 6(b). One more interfering
material, 1% bovine serum albumin (BSA), is used for the
interference tests for IMR. The IMR signal for the reference
sample, which consists of pure 100 pg/mL VEGF, was found
to be (4.30 ± 0.11)%. The IMR signals of the other samples
with interferingmaterials are listed in Table 2.There is hardly
any difference in IMR signals between the samples with
interfering material and the reference sample. A quantitative
analysis of the consistency in IMR signals between samples
with interfering materials and the reference sample was done

through 𝑡-test statistic analysis. A quantity, 𝑃 value, was cal-
culated for the consistency in IMR signals between samples
with interferingmaterials and the reference sample, as labeled
in Figure 6(b). It was found that all 𝑃 values are higher than
0.05, meaning that there was no significant difference in IMR
signals for VEGF solutions without interfering materials as
compared to that of the pure VEGF solution.

In addition to the high specificity of antibodies against
VEGF molecules, there are two important factors relevant to
the high specificity in assaying VEGF using IMR. The first
factor is that the signals detected using IMR are magnetic
instead of optical for ELISA. The colors due to Hb, C-BL, or
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Table 2: Experimental data of ODs and IMR signals for the interference tests using ELISA and IMR, respectively. The results are plotted in
Figures 6(a) and 6(b).

Interfering material None Hb C-BL TG AFP CEA BSA
OD 0.31 ± 0.01 0.62 ± 0.15 0.38 ± 0.008 0.37 ± 0.02 0.29 ± 0.008 0.29 ± 0.01 —
IMR signal (%) 4.30 ± 0.11 4.40 ± 0.07 4.32 ± 0.07 4.42 ± 0.10 4.26 ± 0.07 4.15 ± 0.09 4.28 ± 0.08

TG seriously affect the optical signals for ELISA but do noth-
ing to withmagnetic signals for IMR.The second factor is the
suppression of nonspecific binding between antibodies and
interfering molecules. Briefly speaking, the bound molecules
with antibodies on magnetic particles experience centrifugal
force because of the rotation of particles under external ac
magnetic fields. The centrifugal force is enhanced under
higher rotating frequencies. However, the binding force
between anti-VEGF and non-specific molecules is weaker
than that between anti-VEGF and specific molecules, that is,
VEGF molecules. Thus, by suitably adjusting the frequencies
of the external magnetic fields, the centrifugal force is strong
enough to break out the binding between anti-VEGF and
non-specificmolecules but still weaker than the binding force
between anti-VEGF and VEGF molecules. Therefore, the
non-specific binding can be significantly depressed in IMR.
Other examples for demonstrating the depression in the non-
specific binding by adjusting the frequencies of the external
magnetic fields are reported in [19].

With the relationship between the IMR signals andVEGF
concentration, that is, IMR(%)-𝜙VEGF curve, in Figure 5, the
VEGF concentrations 𝜙VEGF in human serum are detected
using IMR. The serum can be categorized into three groups.
The first group is sixteen serum samples from people without
tumors, denoted as the normal group. The second group is
sixteen serum samples from patients with HCC, referred to
as the HCC group. The third group is sixteen serum samples
of patients with CRC, referred to as the CRC group. The
detected VEGF concentrations 𝜙VEGF using IMR for these
forty-eight serum samples are shown in Figure 7. It was found
that the 𝜙VEGF for normal group ranges from 9 to 40 pg/mL,
which is well below the cut-off concentration in clinics of
50 pg/mL. However, for either the HCC group or CRC group,
𝜙VEGF is much higher than 50 pg/mL. A clear difference in
the VEGF concentration in serum is obtained between the
normal group and cancer (HCC and CRC) group using IMR.

4. Conclusions

By utilizing magnetic nanoparticles biofunctionalized with
anti-VEGF and the SQUID-based mixed-frequency ac mag-
netosusceptometer, the assay properties for VEGF using
immunomagnetic reduction (IMR) technologies are investi-
gated. The SQUID-based IMR shows an ultra-low detection
limit and nonsignificant interference for assaying VEGF.
Further, there is a clear difference in the detected VEGF
concentration in the serum between the normal group and
the cancer group with hepatocellular carcinoma or colorectal
cancer. These results demonstrate the feasibility of achieving
clinically high sensitivity and high specificity for diagnosing
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Figure 7: Detected VEGF concentrations in serum using SQUID-
based IMR for normal people and patients with hepatocellular
carcinoma (HCH) or colorectal cancer (CRC).

malignancy by assaying VEGF in serum using SQUID-based
IMR.
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