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It has been predicted that the nanomaterials of graphene will be among the candidate materials for postsilicon electronics due to
their astonishing properties such as high carrier mobility, thermal conductivity, and biocompatibility. Graphene is a semimetal
zero gap nanomaterial with demonstrated ability to be employed as an excellent candidate for DNA sensing. Graphene-based
DNA sensors have been used to detect the DNA adsorption to examine a DNA concentration in an analyte solution. In particular,
there is an essential need for developing the cost-effective DNA sensors holding the fact that it is suitable for the diagnosis of
genetic or pathogenic diseases. In this paper, particle swarm optimization technique is employed to optimize the analytical model
of a graphene-based DNA sensor which is used for electrical detection of DNA molecules. The results are reported for 5 different
concentrations, covering a range from 0.01 nM to 500 nM. The comparison of the optimized model with the experimental data
shows an accuracy of more than 95% which verifies that the optimized model is reliable for being used in any application of the
graphene-based DNA sensor.

1. Introduction

In the recent decade, DNA biosensors have been widely con-
sidered as a promising means of diagnostic prediction in
genetic research such as cancer or hereditary disease due
to their rapid and sensitive response, as well as the sim-
ple and convenient operation [1, 2]. The interface between
nanomaterials and biosystems is emerging as one of the
most various and dynamic areas of intense research [3].
In order to overcome the limit of planar semiconductor
devices regarding sensitivity and potential for integration
[4, 5], these nanomaterials are commonly proposed in sensor
platform. Nanoscale channel confinement of planar FETs
makes them extremely sensitive to electric perturbations,
due to their one-dimensional structures.Therefore, obtaining
a high sensitivity does not provide a worthy and reliable
sensor. The implementation of nanomaterials of graphene
in graphene field effect transistor (GFETs) constitutes an

important step toward low-cost, easy handle, and highly
sensitive molecular diagnostics [6, 7]. On the other hand,
graphene with a two-dimensional thick monoatomic block
of a carbon allotrope offers a large detection area (as seen
in Figure 1) for DNA sensing compared with other known
nanomaterials [8–11].

The research to date tends to focus on the impact of
graphene-based materials in electronic and optoelectronic
devices along with their potential applications [6].

2. Materials and Methods

2.1. Graphene-BasedDNASensor Structure. Over the past few
decades, a lot of information has become available on field-
effect devices for DNA detection which is reported in the
literature [12–21]. DNA sensors usually presented in diverse
sensor configurations such as electrolyte-silicon (ES) struc-
tures, depletion- and enhancement-mode FETs, floating-gate
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Figure 1: Monolayer graphene structure with one atom thickness.

FET, and FET devices with or without a reference electrode.
SiO
2
, silanized SiO

2
, SiO

2
-Si
3
N
4
, SiO-poly-L-lysine were

employed as various gate-insulator materials with different
thicknesses (from 2 to 100 nm) in various DNA immobi-
lization methods (such as adsorption, covalent attachment,
biotin-vidin complexation, and linker molecules) [22]. As
reported in [16], the densities of the immobilized DNA varies
from 2.4 × 108 to 5 × 1013molecules/cm2 and hybridization
buffer solutions with different electrolyte concentrations
(from 10 nM to 1 nM) were examined to obtain the higher
adsorption. In addition, the mostly reported flat-band or
threshold voltage shift induced upon the DNA hybridization
reach from several mV up to around 1.9 V. The focus of this
theoretical study will be on developing the DNA-sensors-
based graphene nanomaterials which have emerged as one of
the most popular devices holding great promise to provide a
straightforward platform of patience diagnosis [23, 24].

As shown in Figure 2, the schematic of the DNA sensor
consists of a 300-nm SiO

2
layer as a back-gate dielectric and a

doped silicon substrate as the back gate which was proposed
for modeling of DNA sensor in our previous studies [9, 25].
Based on that, graphene layer acts as a conducting channel
connected to the source and drain electrodes which are made
from Au. An Ag/AgCl reference electrode commonly acts
as a gate for measuring the electrical characteristics in a
liquid-gated or electrochemically gated configuration that
controls the current along the graphene sheet between the
two electrodes [26–28]. Considering that the gate leakage
effect is not considered in the current study, the DNA sensors
were exposed to a phosphate buffer solution (PBS) containing
the DNA molecules. In order to understand whether DNA
molecules are adsorbed on the graphene surface or not,
source-drain conductance were measured before and after
exposing the DNA sensor to the different concentration of
DNA molecules [3].

It is noteworthy to explain the DNA adsorption effect on
nanomaterials of graphene surface, as well as the proposed
model. The FET devices are very practical for measuring
the surface charge and therefore the charge changes because
a DNA adsorption event can be measured with a high
accuracy. It has been demonstrated that the interaction
between DNA molecules and graphene layer causes a sig-
nificant change in the conductance of the graphene-based
DNA sensor through the nonelectrostatic gating mechanism

[29, 30]. In Figure 3, the effect of DNA concentration on
the gate voltage at nanomolar concentrations is explored. It
is generally suggested that the electronic-doping (n-doping)
effect by the adsorbed charge species has a significant impact
on conductance change of graphene-based transistors [31].
Moreover, the conductivity of the graphene-based DNA
sensor is influenced by the increased number of carriers in
the channel. As the number of DNA molecules increased
from 0.01 to 500 nM, due to the negative charges of DNA
molecules, it could be expected that the gate voltage would
shift leftwards to the lower amounts [32, 33]. Based on the
detection mechanism, we recently proposed an analytical
model for detection of DNA molecules in which the DNA
concentration was modeled by a gate voltage [9].

Although there are lots of works presented on the experi-
mental progress, the detection mechanism is not understood
quantitatively. On the other hand, modeling and simulation
using partial differential equations (PDE) play a critical role
in determining the current-voltage characteristics, sensitivity,
and the behaviour of the sensing devices exposed to DNA
molecules. Our proposed model is capable of performing
the electrical detection of DNA molecules by modeling the
conductance of the graphene sheets. The conductance of the
large channel in graphene materials is obtained in the ohmic
scaling law using Landauer formula [34].

Consider

𝐺 =

2𝑞
2

ℎ

∫

+∞

−∞

𝑑𝐸𝑀(𝐸) 𝑇 (𝐸) (−

𝑑𝑓

𝑑𝐸

) , (1)

where 𝑞 is the electron charge, ℎ denotes Planck’s constant,
𝐸 represents the energy band structure, 𝑇(𝐸) is the trans-
mission probability, 𝑀(𝐸) is the number of modes, and 𝑓

denotes the Fermi-Dirac distribution function [34, 35]. In
other words,𝑇(𝐸) is the average probability of electron trans-
mission in the channel from one electrode to another. Since
the channel is assumed ballistic, the probability is considered
equal to one (𝑇(𝐸) = 1) [36–38]. In order to highlight the
effect of DNA adsorption on graphene, DNA concentration
as a function of gate voltage is assumed and sensing factor
is defined. High carrier mobility reported from experiments
in the graphene leads to assume a completely ballistic carrier
transportation in the graphene [39]. In the nonsaturation
region, the DNA concentration model is employed as a
function of gate voltage and the ideal current-voltage relation
for the n-channel FET from [34] is modified as

𝐼
𝑑
=

3𝑞
2
(3𝜋𝑎
3
𝑡
3
𝑘
𝐵𝑇
)

1/2

ℎ𝐿

× [I
−1/2

(𝜂) +I
−1/2

(−𝜂)]

× (

∝

𝐹

𝑉
𝑔𝑠(withoutDNA) − 𝑉𝑡) ,

(2)

where 𝑎C–C = 1.42 Å is carbon-carbon (C–C) bond length, 𝑡 =
2.7 (eV) is the nearest neighbor C–C tight binding overlap
energy, 𝐿 is the length of conducting channel, 𝑉

𝑡
refers to the

threshold voltage, ∝ is DNA sensing factor, and 𝐹 is DNA
concentration. Different concentrations of DNA molecules
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Figure 2: Schematics of DNA sensor measurement setup operated by liquid gating where a device is gated through an Ag/AgCl reference
electrode inserted in the electrolyte.
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Figure 3: Transfer characteristics of graphene FET for different
concentrations of DNA molecule.

were presented in the form of 𝐹 parameter. Thus, the DNA
molecules adsorbed on graphene surface by iterationmethod
are modeled as

∝= 𝐴𝐹
2
+ 𝐵𝐹 + 𝐶. (3)

From extracted data, (𝐴, 𝐵, 𝐶) parameters are calculated and
obtained as 𝐴 = 13, 𝐵 = 50, and 𝐶 = 4070. Eventually,
according to the proposedmodel ofDNAsensor using nanos-
tructured graphene layer, the current-voltage characteristic is
modified as

𝐼
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2
(3𝜋𝑎
3
𝑡
3
𝑘
𝐵𝑇
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(4)

All theoretical 𝐼
𝑑
-𝑉
𝑔
characteristics of graphene FET for

DNA concentration are plotted in [30] changing from 0.01
to 500 nM. It is stated that the sensor model with the
proposed parameters represents the same trends as those
reported as experimental data [3, 9]. Since the values of the
parameters 𝐴, 𝐵, and 𝐶 in (3) are calculated based on trial
and error, there is necessity of a methodological approach
for obtaining a viable and accurate model which is reliable
for being used in different applications of the graphene-
based DNA sensor. To this aim, a swarm-based evolutionary
algorithm (EA) called particle swarm optimization (PSO) is
used for optimizing the mathematical model shown in (3). In
important applications of DNA sensors such as hybridization
detection, the behaviour of 𝐼

𝑑
-𝑉
𝑔
characteristic around𝑉

𝑔min
is very important and determinant. Therefore, a proper and
reliable model should be capable of providing the same
features with experimental data around the mentioned area.
The better the modelled curve fits the experimental result,
the more the reliable model is achieved. In the current
study, the optimized model using PSO provides a fitter
𝐼
𝑑
-𝑉
𝑔
characteristic compared with the previous mathematic

model, especially around the 𝑉
𝑔min point which is very

important for the main applications of the model.
The PSO technique is widely used in optimizing different

sorts of problems including fine materials, medical science,
control theory, and energy issues [40–43]. The important
facts which make PSO popular among the researchers are its
fastness, its ability to avoid being trapped in the local optima,
and its capability of being employed in any type of optimiza-
tion problem [44–48]. Swarm intelligence techniques have
several advantages that make them useful for optimization
applications. Some of these advantages are scalability, flexibil-
ity, robustness, and low production costs. Scalability means
particles can be added to the swarm without making any
change in the overall behaviour of the colony. In other words,
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Figure 4: A simple diagram for movement of a sample particle in
PSO.

individuals typically have a limited range of interaction with
their neighborhood, so that the introduction of a new particle
does not directly affect the whole swarm [49]. That helps to
change the scale and size of the swarm easily, based on the
size of the search space defined. Flexibility gives the ability to
the swarm to be adapted to different problems under different
circumstances. A well-designed swarm algorithm can exploit
and explore an unknown territory, even encountering a huge
gap in the search space. With regard to the robustness,
if a few faulty individuals exist in the swarm, they may
not affect the global optimum found by the swarm. The
fourth main advantage is having low production costs. This
is respective to the computational cost and memory size per
unit of the individuals which gives the possibility of being
used in small cheap components. The main advantage of
the particle swarm optimization technique over other global
optimization methods such as simulated annealing is having
a large number of agents which makes the particle swarm
technique resilient to the local optima points of the search
space. In other words, it helps the algorithm in not being
trapped in the local optima points.

2.2. Particle Swarm Optimization (PSO). The PSO algorithm
is mainly based on the movement of a population of particles
as a “Swarm.”This movement is inspired from a school of fish
or a bird flock [50–52]. The evaluation of the search space
is being performed step by step. There are some parameters
which need to be saved at each step, since they will be needed
in calculating the parameters of the next step. Equations (4)
and (5) show the velocity and location of 𝑖th particle at 𝑘th
step.

Consider
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𝑖 = 1, 2, . . . , nop (number of particles); 𝑘 = 1, 2, . . . , 𝑘max
(maximum iteration number), where, K is the iteration
number; 𝑖 is the particle number; 𝑊 refers to the inertia
weight coefficient which is normally chosen between 0.5 and
1.2; 𝑐1 and 𝑐2 are acceleration constants; 𝑟1 and 𝑟2 are random
values between 0 and 1; 𝑉𝑘

𝑖
is the velocity of particle 𝑖 at

iteration 𝑘; and 𝑋
𝑘

𝑖
indicates the position of particle 𝑖 at

iteration 𝑘.
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Figure 5: The search pace of the problem.

Besides the above parameters which should be calculated
for each particle, there are some social parameters that lead
the swarm to the region which contains the global optima.
“Personal best” and “Global best” are two parameters which
are being used in all the PSO versions. They are normally
shown as “Pbest” and “Gbest,” respectively. The Pbest is
known as the best location that each particle experienced
so far during the runtime, and the Gbest is the best global
optimum found so far by the swarm. Figure 4 shows a simple
diagram of movement of a typical particle.

3. Implementing Particle Swarm Optimization
in DNA Sensor

3.1. Representation of the Search Space. Swarm is the particles
which are moving and giving solutions for solving the
problem. The particles move in the domain of the problem
space and each of them represents a solution for the problem.
The parameters to be optimized in the DNA sensor model
are 𝐴, 𝐵, and 𝐶 coefficients as in (2). Figure 5 illustrates a
three-dimensional search space of the problem. If

⌣

𝐴,
⌣

𝐵, and
⌣

𝐶 are the vectors which return 𝐴, 𝐵, and 𝐶, respectively,
then particle 𝑖 flies in the search space to find the best
possible values for the respective parameters. Vector 𝑉

𝑖
is the

movement velocity vector of the particle 𝑖 which is obtained
from (4).

In the optimization process, each location represented by
the particles is a possible solution. The search space consists
of arrays and matrices. For example, 𝑋[𝑖][𝑗] is a matrix of
the location of the particles in the proposed algorithm, while
𝑖 indicates the particle and 𝑗 is the index of the optimizing
parameter. In Figure 5, the dimension of the 𝑋[𝑖][𝑗] matrix
will be 200 × 3, if we consider the number of particles to be
equal to 200.

3.2. Fitness Function and Parameter Selection. To evaluate
the solutions proposed by the particles, we need to define
a fitness function. The fitness function has to be able to
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Figure 6: A flowchart of PSO-based algorithm for optimizing the
DNA sensor.
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Figure 8:The convergence profile of the optimization process using
PSO technique.

determine which solution is better and more efficient after
considering all the solutions obtained by the particles at each
iteration. Normally the fitness function is being set to have
the lowest possible value at an optimum point. In the current
study, we also need to have the lowest possible value of the
error between the experimental waveform and the proposed
model; hence, the fitness function is proposed as follows:

Fitness function = 𝜓
𝑖
=

max
∑

𝑘=1

(

⌣

𝐼 𝑖 (
𝑘) − 𝐼 (𝑘))

2

, (7)

where
⌣

𝐼 𝑖
(𝑘) represents the modelled current waveform for

particle 𝑖, 𝐼(𝑘) is the experimental current of the DNA sensor,
and 𝜓

𝑖
is the fitness value of the 𝑖th particle. Based on the

fitness function chosen, the best solution will propose the
most fitted curve for the current waveform which is desired
for a suitable DNA sensor model. The parameters of the PSO
algorithm are chosen based on the values tabulated in Table 1,
and the strategy of the optimization is shown in a flowchart
as in Figure 6.

3.3. Optimization Results for DNA Sensor Model. After the
optimization process, the best values obtained for the param-
eters𝐴, 𝐵, and𝐶 are tabulated in Table 2.These values are the
best among the 20 runs of the optimization algorithm, and
the lowest fitness value is the indicator of choosing the best
parameters.The lowest obtained fitness value is also shown in
the tablewhich determines how good themodelledwaveform
fits the experimental curve.

The train for the optimizing parameters is performed
using the experimental curve of the bare DNA sensor.
Figure 7 illustrates the experimental waveform and the
optimized model of the probe DNA sensor.

To show the convergence quality of the optimization
process using PSO technique, the convergence profile of
the best fitness value is shown in Figure 8 which is based
on the fitness value versus iteration. The graph shows that
the algorithm could converge to the optimized values after
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Figure 9:The optimizedmodel and experimental waveforms for different concentrations of theDNA sensor: (a)𝐹 = 0.01 nM, (b)𝐹 = 0.1 nM,
(c) 𝐹 = 1 nM, (d) 𝐹 = 10 nM, (e) 𝐹 = 100 nM, and (f) 𝐹 = 500 nM.
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Table 1: The parameters chosen for the PSO algorithm.

Number of particles (nop) Number of dimensions (nod) 𝑐1 𝑐2 Maximum iteration Inertia weight (𝑊)
200 3 2 2 300 0.4 < 𝑊 < 1.2

Table 2: The best values of the optimizing parameters over the 20 runs.

The best fitness value obtained Optimized value for A Optimized value for B Optimized value for C
4.484𝑒 − 07 1.0865𝑒10 9.9662𝑒9 −5.921𝑒3

Table 3: The MAPE value with respect to the different concentra-
tions (𝐹).

Concentration F
(nM)

MAPE value
(%)

Accuracy based on MAPE
(%)

𝐹 = 0.01 4.58 95.42
𝐹 = 0.1 3.52 96.48
𝐹 = 1 3.33 96.67
𝐹 = 10 3.39 96.61
𝐹 = 100 3.52 96.48
𝐹 = 500 3.94 96.06

around 60 iterations which show a good convergence speed
of the proposed method.

Using the values obtained for 𝐴, 𝐵, and 𝐶 parameters,
different concentrations of the DNA sensor are modelled
and compared with the experimental waveforms with the
same concentrations. To evaluate the quality of the obtained
waveforms with respect to the experimental results, mean
absolute percentage error (MAPE) index is used as an error
evaluation parameter as follows:

MAPE = 1

𝑛

𝑛

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

⌣

𝐼 (𝑘) − 𝐼 (𝑘)

𝐼 (𝑘)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

. (8)

The results based on theMAPE index for different concentra-
tions of the DNA sensor are shown in Table 3. The accuracy
based on the MAPE value can be obtained as the result of
deducting MAPE from 100 percent. Based on the results in
the table, the accuracy of the optimized model is more than
95% for all the concentrations which is an acceptable range of
accuracy.

Also, the optimized waveforms for different concentra-
tions are seen in Figure 9, where for each concentration the
optimized model and experimental waveforms are plotted. It
needs to be mentioned that the middle part of the graph is
very important, since the voltage used in the experiment is
normally between 0 and 1 volts.Theoptimizedmodel fits even
better around the mentioned voltage range.

It needs to be mentioned that the 𝑉
𝑔min (minimum

gate voltage) is a very sensitive indicator for detection of
DNA molecules and the optimized model shows a better
performance around the (0 and 1 volt) voltage range.

4. Conclusion

Due to the unique characteristics of the graphene such
as special C–C bonding, 1D structure, large surface-to-
volume ratio, high conductivity, and biocompatibility, it has
remarkable potential for biosensing material applications.
The graphene-based DNA sensor has a similar structure to
traditional metal-oxide-semiconductor FET (MOSFET) in
which the gate is exposed to the electrolyte solution contain-
ingDNAmolecules. In these sensors, DNAadsorption occur-
ring on a graphene surface changes the 𝐼-𝑉 characteristics of
the transistors due to the intrinsic negative charge of DNA.
In this research, DNA sensing factor which was presented
in our previous work is optimized using particle swarm
optimization (PSO) technique. The optimization process is
performed in order to find the optimized values of fitting
parameters in a current-voltage characteristic of DNA sensor
model to predict graphene doping behavior in GFET devices.
Based on the results obtained, an accuracy of more than
95% is obtained for the optimized model compared with the
available experimental data. It can be concluded that the opti-
mized grapheme-basedDNA sensormodel with the accuracy
obtained is now suitable and reliable for being employed
in different applications such as diagnosis of genetic and
pathogenic diseases.
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