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Mg
2+xSi0.7Sn0.3Sbm (0 ≤ 𝑥 ≤ 0.2, 𝑚 = 0 or 0.01) solid solutions have been successfully prepared by mechanical alloying and

hot pressing as a solid-state synthesis route. All specimens were identified as phases with antifluorite structure and showed n-
type conduction. The electrical conductivity of Mg-excess solid solutions was enhanced due to increased electron concentrations.
The absolute values of the Seebeck coefficient varied substantially with Sb doping and excess Mg, which was attributed to the
change in carrier concentration. The onset temperature of bipolar conduction was shifted higher with Sb doping and excess Mg.
The lowest thermal conductivity of 1.3W/mK was obtained for Mg

2
Si
0.7
Sn
0.3
Sb
0.01

. A maximum ZT of 0.64 was achieved at 723K
for Mg

2.2
Si
0.7
Sn
0.3
Sb
0.01

.

1. Introduction

A thermoelectric generator that converts heat energy directly
into electricity offers several benefits, including moderate
efficiency, simple device structure, and no moving parts
[1, 2]. Thermoelectric materials for high energy conversion
efficiency should have a large figure-of-merit value (𝑍𝑇 =
𝛼
2
𝜎𝑇/𝜅), that is, a large Seebeck coefficient (𝛼), high electrical

conductivity (𝜎), and low thermal conductivity (𝜅). However,
for a given material, these parameters are not independent,
because they are closely related to carrier concentration and
effective mass. Consequently, thermoelectric materials with a
high ZT value should have low lattice thermal conductivity
and high carrier mobility with optimum carrier concentra-
tion [3, 4].

Magnesium compounds Mg
2
X (X = Si,Ge, Sn) and

their solid solutions have attracted increasing attention as
promising thermoelectric materials at temperatures ranging

from 500 to 800K, because they are nontoxic, environmen-
tally friendly, and abundant [5, 6]. In general, the thermal
conductivity can be significantly reduced by phonon scat-
tering of point defects as seen solid solutions, which make
the low-frequency phonons decrease the thermal conduc-
tivity. Among the various solid-solution Mg

2
X systems, it is

expected that higher ZT can be obtained with Mg
2
Si
1−𝑥

Sn
𝑥
,

because of the greater difference in atomic mass between Si
and Sn [7, 8].

The content of Mg and Sb has a significant impact on
the electron concentration and thermoelectric properties of
n-type Mg

2
Si
1−𝑥

Sn
𝑥
solid solutions [9, 10]. The ZT values of

Mg
2
Si
1−𝑥

Sn
𝑥
solid solutions can be enhanced through excess

Mg and/or Sb doping. In order to reduce the changes in
composition due to the volatilization and oxidation caused by
Mg, Mg

2+𝑥
Si
0.7
Sn
0.3
Sb
𝑚
solid solutions with controlled Mg

contents were synthesized by mechanical alloying and hot
pressing as a solid-state route.
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2. Experimental Procedure

Mg
2+𝑥

Si
0.7
Sn
0.3
Sb
𝑚
(0 ≤ 𝑥 ≤ 0.2, 𝑚 = 0 or 0.01) solid

solutions were synthesized by mechanical alloying (MA) and
consolidated by hot pressing (HP). High-purity Mg (99.99%,
<149 𝜇m) with an excess of 0–10mol%, Si (99.99%, <45𝜇m),
Sn (99.999%, <75𝜇m), and Sb (99.999%, <75 𝜇m) were
weighed.The powders were mixed and loaded with hardened
steel balls (5mm in diameter) into a hardened steel vial in
an argon atmosphere at a weight ratio of 1 : 20. The vial was
then loaded into a planetary ball mill (Fritsch, Pulverisette 5)
andmechanically alloyed at 300 rpm for 24 h.The synthesized
powders were hot-pressed in a cylindrical graphite die with
an internal diameter of 10mm at temperatures ranging from
873K to 1073K under a pressure of 70MPa for 2 h in a
vacuum.

The phases and lattice constants of the synthesized solid
solutions were analyzed by an X-ray diffractometer (XRD,
Bruker D8 Advance) using Cu K

𝛼
radiation (2𝜃: 10–90∘). The

Hall coefficient measurements were performed in a constant
magnetic field (1 T) and electric current (50mA) using the
van der Pauw method at room temperature. The Seebeck
coefficient and electrical conductivity were measured using
the temperature differential and 4-probe methods, respec-
tively, with ZEM-3 equipment (Ulvac-Riko) in a helium
atmosphere. The thermal conductivity was estimated from
measurements of the thermal diffusivity, specific heat, and
density, which were obtained using a laser flash TC-9000H
system (Ulvac-Riko) in a vacuum. The thermoelectric figure
of merit was evaluated from 323K to 823K.

3. Results and Discussion

Figure 1 shows the X-ray diffraction patterns for solid-state
synthesized Mg

2+𝑥
Si
0.7
Sn
0.3
Sb
𝑚

solid solutions. All speci-
mens were identified as phases with antifluorite structure.
The patterns of solid solutions correspond with all the peaks
located between pure Mg

2
Si and Mg

2
Sn, but in the equi-

librium phase diagram of the Mg
2
Si-Mg

2
Sn pseudobinary

system, theMg
2
Si
1−𝑥

Sn
𝑥
has an immiscibility gap in the range

of 𝑥 = 0.4–0.6 [11] or 𝑥 = 0.2–0.7 [12], and the Sn-rich phase
coexists with the Si-rich phase in this composition range. In
this study, the Si-rich phases were observed, but secondary
phases were not found.

Table 1 lists the electronic transport properties of
Mg
2+𝑥

Si
0.7
Sn
0.3
Sb
𝑚

at room temperature. All specimens
showed n-type conduction, and the carrier concentration of
Mg
2
Si
0.7
Sn
0.3

was approximately 7.4 × 1016 cm−3, which was
increased to 1.8×1019 cm−3 by excess Mg and Sb doping.The
Sb successfully acted as a donor, and the excess Mg donated
electrons. However, the carrier mobility was reduced by
excess Mg and Sb doping, which was attributed to ionized
impurity scattering.

Figure 2 shows the temperature dependence of the elec-
trical conductivity for Mg

2+𝑥
Si
0.7
Sn
0.3
Sb
𝑚
. The electrical

conductivity increased with increasing temperature, indicat-
ing nondegenerate semiconducting behavior. For the excess
Mg and Sb-doped specimens, the electrical conductivity
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Figure 1: X-ray diffraction patterns for Mg
2+𝑥

Si
0.7
Sn
0.3
Sb
𝑚

solid solutions: (a) Mg
2
Si
0.7
Sn
0.3
, (b) Mg

2
Si
0.7
Sn
0.3
Sb
0.01

, (c)
Mg
2.1
Si
0.7
Sn
0.3
Sb
0.01

, and (d) Mg
2.2
Si
0.7
Sn
0.3
Sb
0.01

.

Table 1: Electronic transport properties of Mg
2+𝑥

Si0.7Sn0.3Sb𝑚 at
room temperature.

Specimen Hall coefficient
(cm3/C)

Mobility
(cm2/Vs)

Carrier
concentration

(cm−3)
Mg2Si0.7Sn0.3 −83.88 30.25 7.4 × 10

16

Mg2Si0.7Sn0.3Sb0.01 −4.30 9.44 1.4 × 10
18

Mg2.1Si0.7Sn0.3Sb0.01 −0.36 1.67 × 10
−1
1.8 × 10

19

Mg2.2Si0.7Sn0.3Sb0.01 −0.39 1.74 × 10
−1
1.5 × 10

19

increased at specific temperature due to an increase in
carrier concentration compared to Mg

2
Si
0.7
Sn
0.3
, as shown

in Table 1. As a result, the electrical conductivity of the Mg-
excess solid solutions was enhanced.

Figure 3 presents the temperature dependence of the
Seebeck coefficient forMg

2+𝑥
Si
0.7
Sn
0.3
Sb
𝑚
.The Seebeck coef-

ficient had a negative sign at all temperature ranges, which
was in good agreement with the Hall coefficient.The absolute
values of the Seebeck coefficient varied considerably with Sb
doping and excess Mg, which was attributed to the changes
in carrier concentration. The onset temperature of bipolar
conduction was increased with Sb doping and excess Mg.
According to the formula |𝛼| = r − clnn, where |𝛼| is the
absolute value of the Seebeck coefficient, 𝑟 is the scattering
parameter, 𝑐 is the constant, and 𝑛 is the carrier concentration
[12], |𝛼| became smaller because 𝑛was increased by Sb doping
and excess Mg.

Figure 4 shows the temperature dependence of the power
factor (PF) for Mg

2+𝑥
Si
0.7
Sn
0.3
Sb
𝑚
. The power factor was

calculated by 𝑃𝐹 = 𝛼2𝜎 from the Seebeck coefficient (𝛼)
and electrical conductivity (𝜎). PF increased with increasing
temperature andby Sbdoping and excessMg.Comparedwith
Mg
2
Si
0.7
Sn
0.3
Sb
0.01

, the PF value of specimens with excess
Mg was improved by a factor of 3 to 4. The highest PF was
1.46mW/mK2 at 723K for Mg

2.2
Si
0.7
Sn
0.3
Sb
0.01

.
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Figure 2: Temperature dependence of the electrical conductivity for
Mg
2+𝑥

Si
0.7
Sn
0.3
Sb
𝑚
.
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Figure 3: Temperature dependence of the Seebeck coefficient for
Mg
2+𝑥

Si
0.7
Sn
0.3
Sb
𝑚
.

Figure 5 presents the temperature dependence of the
thermal conductivity of Mg

2+𝑥
Si
0.7
Sn
0.3
Sb
𝑚
. The thermal

conductivity was 1.3–2.2W/mK in the temperature range of
323K to 823K. The thermal conductivity had a minimum
value with increasing temperature. The increase in thermal
conductivity at high temperatures was attributed to bipolar
conduction by intrinsic excitation. Sb doping and excess
Mg increased the onset temperature of bipolar conduction.
Mg
2
Si
0.7
Sn
0.3
Sb
0.01

had the lowest thermal conductivity of
1.3–1.9W/mK at all temperatures. The lattice contribution
to the thermal conductivity was dominant over the carrier
contribution for Mg

2+𝑥
Si
0.7
Sn
0.3
Sb
𝑚
specimens because their
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Figure 4: Temperature dependence of the power factor for
Mg
2+𝑥

Si
0.7
Sn
0.3
Sb
𝑚
.
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Figure 5: Temperature dependence of the thermal conductivity for
Mg
2+𝑥

Si
0.7
Sn
0.3
Sb
𝑚
.

thermal conduction behavior was inconsistent with the
Wiedemann-Franz law [13].

Figure 6 shows the temperature dependence of the figure
of merit (ZT) for Mg

2+𝑥
Si
0.7
Sn
0.3
Sb
𝑚
. The ZT values of the

undoped specimen were very low, with values less than
0.05 at all temperatures examined. However, the ZT was
remarkably increased by Sb doping and excess Mg, mainly
due to the increase in power factor. A maximum ZT of 0.64
was achieved at 723K forMg

2.2
Si
0.7
Sn
0.3
Sb
0.01

.The ZT values
of 𝑥 = 0.1 and 𝑥 = 0.2 were nearly the same, which makes
𝑥 = 0.1 a sufficient amount of excess Mg to improve the
thermoelectric properties.
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.

4. Conclusions

Mg
2+𝑥

Si
0.7
Sn
0.3
Sb
𝑚
(0 ≤ 𝑥 ≤ 0.2, 𝑚 = 0 or 0.01) solid

solutions were successfully prepared by mechanical alloying
and hot pressing. All specimens showed n-type conduction,
and the carrier concentration effectively increased from 7.4×
10
16 cm−3 to 1.8 × 1019 cm−3 by Sb doping and excess Mg.

As a result, the electrical conductivity increased remarkably.
The temperature dependencies of the Seebeck coefficient
and the thermal conductivity were varied by Sb doping and
excess Mg, which increased the onset temperature of bipolar
conduction. A maximum ZT of 0.64 was achieved at 723K
for Mg

2.2
Si
0.7
Sn
0.3
Sb
0.01

with excess Mg.
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