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In this work we have synthesized and characterized new hybrid nanoplatforms for luminescent biolabeling based on the concept
of Eu3+ complexes encapsulation in mesoporous silica nanoparticles (≈100 nm). Eu complexes have been selected on the basis of
their capability to be excited at 365 nm which is a currently available wavelength, on routine epifluorescence microscope. For Eu
complexes encapsulation, two different routes have been used: the first route consists in grafting the transition metal complex into
the silica wall surface. The second way deals with impregnation of the mesoporous silica NPs with the Eu complex. Using the
second route, a silica shell coating is realized, to prevent any dye release, and the best result has been obtained using Eu-BHHCT
complex. However, the best solution appears to be the grafting of Eu(TTA)

3
-Phen-Si to mesoporous silica NPs. For this hybrid,

mSiO
2
-Eu(TTA)

3
(Phen-Si) full characterization of the nanoplatforms is also presented.

1. Introduction

Recent breakthroughs in the synthesis of mesoporous silica
materials with the control of the particle size, the morphol-
ogy, and the porosity, along with their chemical stability,
have made silica matrices highly attractive as the structural
basis for a wide variety of nanotechnological applications
such as adsorption, catalysis, sensing, and separation [1–
7]. In addition, some authors have highlighted that surface-
functionalized mesoporous silica nanoparticle (MSN) mate-
rials can be readily internalized by animal and plant cells
without posing any cytotoxicity issue in vitro [8, 9]. These

new developments offer the possibility of designing a new
generation of drug/gene delivery systems and biosensors for
intracellular controlled release applications.

Another possible application consists in encapsulating a
luminescent dye in plain or mesoporous silica nanoparticles
for optical biolabeling [10–12]. For this goal, the dyemolecule
must be perfectly trapped inside the mesoporous matrix in
order to prevent the leaching and bleaching effects. Many
dye molecules can be encapsulated inside mesoporous NPs;
however, we think that lanthanide complexes as Eu3+ or Tb3+
have the strong competitive advantage (versus commercial
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organic probes) to allow the time delayed measurement for
complete extinction of the biological self-fluorescence during
the measurement [13]. Moreover, encapsulated lanthanide
chelates are not, or weakly, subjected to photobleaching or
photobleaking, they are chemically very stable and non-toxic.
All these factors constitutemajor advances, as it has been well
demonstrated by Dr. Jin and his team [14].

However, formost luminescent Eu3+ andTb3+ complexes,
one of the major drawbacks is that optical excitation window
is limited to the far-UV (<330 nm) range. Far-UV excitation
is often problematic in biology because it causes damages to
the cellular matter. Excitation below 330 nm involves poor
transmission in most optics, is bulky, expensive, and has
limited light sources. Most of commercial flow cytometers
and microscopes are not used at these wavelengths [14–16].

Several longer-wavelength-sensitized Eu3+ complexes
have been developed in recent years [17–22] and used as
biolabels for time-resolved luminescence bioimaging appli-
cations. Their properties have been illustrated, for example,
by the highly specific and sensitive imaging of an envi-
ronmental pathogen, that is, Giardia lamblia [23], and by
the use of bioconjugated silica nanoparticles embedding an
europium complex to mark cancerous cells [24]. However
for our knowledge, encapsulation of such complexes inside
mesoporous nanoparticles has not been done systematically.
Themain advantage of mesoporous NPs is their high loading
capability compare to plain SiO

2
NPs, which can potentially

lead to brighter probes. Consequently, the main goal of this
work is to encapsulate these new long wavelength-sensitized
Eu3+ complexes and to characterize the derived new nanohy-
brids, for cellular labeling, using light excitation in the NUV
range (355–365 nm) given by laser (or Hg lamp) sources
available on flow cytometer or fluorescent microscope. To
reach this goal we have used two different approaches. The
first route consists in grafting transition metal complexes
into the silica wall surface by using a bifunctional ligand
which can chelate the metal on one side and react with
the silica wall on the other side (samples named as mSiO

2
-

XXX in the following). The second way is easier and consists
in impregnating the mesoporous silica NPs with the Eu3+
complex and then to elaborate a silica shell coating which will
prevent any dye release (samples named as mSiO

2
@XXX in

the following).

2. Experimental Section

2.1. Reagents and Materials. Most reagents were purchased
fromSigma-Aldrich.N,N󸀠-Dimethylformamide (DMF), hex-
ane, chloroform, and ethanol were of analytical grade and
usedwithout any further purification. Eu(NO

3
)
3
was aqueous

stock solution from Rhodia.

2.2. Chemical Synthesis

2.2.1. Synthesis of Mesoporous Silica Nanoparticles (mSiO
2
).

Typically, 0.2821 g of NaOH (PRS Panreac) and 1.048 g of
cetyltrimethylammonium bromide (CTAB) were mixed with
480mL of distilled water. After this, the mixture was kept

under constant stirring, and the temperature was increased
up to 80∘C. 5mL of tetraethyl orthosilicate (TEOS) was
added as the silica precursor, dropwise, slowly (in 20min
approximately).Themixture was kept at 80∘Cunder vigorous
stirring for 20 h.The obtained precipitate was centrifuged and
washedwithwater.The sedimented productwas rapidly dried
in an oven at 60∘C and then treated at 500∘C for 5 h (increase
1∘C/min), in order to decompose all the surfactants.The final
weight of the obtained silica was approximately 1.0 g.

2.2.2. Synthesis of Eu(TTA)
3
(Phen-Si) and Grafting in mSiO

2
.

Eu(TTA)
3
(Phen-Si) complex was prepared via a two-step

process as shown in Figure 1.

(a) Synthesis of Ligand Phen-Si. The ligand was prepared
according to the procedures described by Li et al. [25, 26].
Typically, 5-amino-1,10-phenanthroline (4.1mmol, 800.4mg)
was dissolved in CH

3
Cl (75mL), and 3-(triethoxysilyl)propyl

isocyanate (4.5mmol, 1.11mL) was added to the solution.
The mixture was then reduced to a volume of 5mL and
refluxed at 65∘C under Ar overnight. Cold hexane was then
added to precipitate the powder.This powderwas collected by
centrifugation, washedwith hexane, and dried under vacuum
overnight.

Elemental analysis for C
22
H
30
N
4
O
4
Si, %, found

(calcd.): C 52.8 (57.4); H 5.7 (6.22); N 12.1 (13.4). 1HNMR
(300.13MHz; CDCl

3
, 𝛿H ppm) 0.63 (2H, m, CH

2
, 14-H), 1.10

(9H, t, 𝐽AB 7, CH3, 16-H), 1.68 (2H, m, CH
2
, 13-H), 3.34 (2H,

m, CH
2
, 12-H), 3.75 (6H, q, 𝐽AB 7, CH

2
, 15-H), 6.34 (1H, br,

CH, 7-H), 7.20 (1H, dd, CH, 3󸀠-H), 7.57 (1H, dd, CH, 3-H),
8.15 (1H, m, CH, 4󸀠-H), 8.18 (1H, br, NH, 11-H), 8.37 (1H, m,
CH, 4-H), 8.38 (1H, br, NH, 9-H), 8.86 (1H, m, CH, 2󸀠-H),
9.00 (1H, m, CH, 2-H). 13C{1H} NMR (75.5MHz; CDCl

3
, 𝛿c

ppm) 7.7 (s, CH
2
, 14), 18.3 (s, CH

3
, 16), 23.7 (s, CH

2
, 13), 42.8

(s, CH
2
, 12), 58.4 (s, CH

2
, 15), 118.1 (s, CH, 7), 122.4 (s, CH,

3󸀠), 123.5 (s, CH, 3), 125.0 (s, C, 6), 129.0 (s, C, 5󸀠), 131.0 (s,
CH, 4󸀠), 132.8 (s, C, 5), 135.9 (s, CH, 4). 143.0 (s, C, 6󸀠), 146.2
(s, C, 8), 149.0 (s, CH, 2󸀠), 149.6 (s, CH, 2), 156.8 (s, C, 10).

(b) Synthesis of Complex Eu(TTA)
3
(Phen-Si). The complex

was prepared according to the procedure described by Duan
et al. [28]. 2-Thenoyltrifluoroacetone (TTA) (6mmol, 1.332 g)
was dissolved in 20mL of absolute ethanol, and triethylamine
(6mmol, 0.81mL) was added. After 10min of stirring, the
ligand (Phen-Si) (2mmol, 0.738 g) was added, followed by
Eu(NO

3
)
3
(2mmol, 0.517 g).The reactionmixture was heated

at 50–60∘C and stirred under Ar for an appropriate time
(3–5 h). The reaction mixture was then cooled to room
temperature, and the solvent was removed at 40∘C under
reduced pressure until obtaining a powder. Then the powder
was washed with water and centrifuged. The crude product
was then recrystallized by refluxing in ethanol to obtain the
desired product which was collected by filtration and dried
under vacuum at 40∘C.

Elemental analysis for C
46
H
39
N
4
O
10
F
9
S
3
SiEu, %, found

(calcd.): C 41.4 (44.0); H 3.6 (3.1); N 8.2 (8.16). SM. (m/z);
found 839.9. Calc. for (Eu(Phen-Si)(TTA)(NO

3
))+: 837. IR

(KBr, cm−1): 2945 ]as (CH2, CH3); 2808 ]s (CH2, CH3); 1546,
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Figure 1: Chemical structure of (a) the silylated phenanthroline ligand (Phen-Si) (and carbon atom numbering related to NMR data) and
(b) the Eu(TTA)

3
(Phen-Si) complex.

1500 ] (C=O); 1440, 1423, 1385 ]as (C–C=C) aromatic; 737, 668
𝛾 (=C–H) aromatic.

(c) Grafting of Eu(TTA)
3
(Phen-Si) into mSiO

2
Nanoparticles.

The grafting was carried out according to amodified protocol
from Rocha et al. [27]. mSiO

2
NPs were suspended in

DMF. 94.2 𝜇mol/g of Eu(TTA)
3
(Phen-Si) complex was also

suspended with DMF.Then the two suspensions were mixed,
and the final concentration of mSiO

2
was 1mg/mL.The mix-

ture was refluxed for 24 h. The powder was then centrifuged,
washed three timeswith ethanol, and dried at 80∘C in an oven
overnight.The europium content, determined by TEM-EDX,
is 0.1% (mol).

2.2.3. Synthesis of Si-DBM-Eu(DBM)
2
Complex and

Grafting in mSiO
2

(a) Preparation of Sodium 𝛽-Diketonate (Na-DBM). The
ligand was prepared according to the procedure described by
Machado et al. [29] and De Oliveira et al. [30]. Na(s) (0.7 g,
30.0mmol) was dissolved in 30mL of anhydrous methanol
under an argon atmosphere to produce sodium methoxide.
6.7 g (30.0mmol) of dibenzoylmethane (DBM) was added
to the methoxide solvent to obtain a viscous suspension.
Subsequently, the powder was collected by filtration, washed

with anhydrous methanol, and dried under vacuum at 50∘C
producing Na-DBM with a yield of 85%.

(b) Synthesis of Silylant Agent with 3-Chloropropyltrime-
thoxysilane (TMOSCl). TMOSCl (1.13mL, 6.0mmol) and
1.482 g (6.0mmol) of Na-DBM were added to 30mL of
anhydrous methanol. The solution was stirred under argon
atmosphere at 50∘C for 24 h.The silylating agent was denoted
by Na(Si-DBM). Figure 2 shows the chemical structure that
represents this process.

(c) Grafting of Na(Si-DBM) inside mSiO
2
Nanoparticles, Com-

plexation with Eu3+. The grafting was carried out according
to a modified protocol from Rocha et al. [27]. mSiO

2
NPs

(50mg) were added to anhydrous ethanol (0.35mol) and 30%
NH
4
OH (10mmol) mixture. Na(Si-DBM) solution (1.31mL)

was then added to the above mixture that was then stirred
for 1 h. The powder was then centrifuged, washed three
times with ethanol, and dried at 50∘C in an oven overnight.
Finally, the powder was suspended in anhydrous ethanol
(10mL) containing EuCl

3
(2.35mL, 0.10mol⋅L−1), producing

mSiO
2
-Eu(Si-DBM). To complete the coordination sphere

of Eu3+, 20mg of DBM-Na was added to produce the final
luminescent material, SiDBM-Eu(DBM)

2
[30]. The powder

was again centrifuged, washed three times with ethanol, and
dried at 50∘C in an oven overnight.
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Figure 2: Chemical structure of the silylated Na(Si-DBM) ligand [27].
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Figure 3: FTIR spectrum of Si-DBM-Eu(DBM)
2
.

FTIR spectrum of sample is presented Figure 3. The
typical bands of bothDBMand silica structure, such as a large
band centered on 3434 cm−1, assigned to OH stretching of
silanol groups of inorganic mesoporous structure of material
and also adsorbed and/or bonded water can be seen. Three
peaks at 2964, 2923, and 2852 cm−1 are related to C–H
stretching of CH

2
and CH

3
groups. The mesoporous silica

structure can also be seen with the bands at 1065, 805, and
455 cm−1, corresponding to the different Si–O–Si vibrations
(stretching, bending, and rocking, resp.). Signal related to the
beta-diketone can also be observed with the four bands at
1597, 1548, 1458, and 1313 cm−1, corresponding, respectively,
to ]as (C=O), ] (C=C), ]s (C=O), and ]as (C–C) of DBM [30].
Europium content has been quantified by EDX-MET and has
been found to be 0.04% (mol).

2.2.4. Impregnation of mSiO
2
NPs with Eu(DBM)

3
(Phen) and

Eu(BHHCT) Complexes

(a) Synthesis of Eu(DBM)
3
(Phen) and mSiO

2
Impregnation.

The complex was prepared according to Melby et al. [31]
with some modifications. The ligand was first deprotonated
by addition of 113.6 𝜇L of a solution of KOH in methanol

0.990mol⋅L−1 to 750𝜇L of an ethanolic solution of diben-
zoylmethane (DBM) 0.150mol⋅L−1, followed by 375𝜇L of an
ethanolic solution of 1,10-phenantroline 0.1mol⋅L−1. Then,
375 𝜇L of an aqueous solution of Eu(NO

3
)
3
0.1mol⋅L−1 was

added dropwise under magnetic stirring, to give the pre-
cipitated complex [Eu(DBM)

3
(Phen)]. This suspension was

stirred for 24 h at room temperature and then centrifuged.
The precipitate was carefully washed with ethanol, recovered
by centrifugation, and dried at 60∘C in air overnight. The
complex was then dissolved in DMSO and stirred with
30mg of mesoporous silica nanoparticles during 24 h at
room temperature, in order to encapsulate it. The amount
of europium complex impregnated was calculated to be
6.25 𝜇mol per 5mg of mesoporous silica. Finally, the sample
was coated with silica-amine shell as described in the next
topics. After analysis, the Eu3+ content has found to be 0.42%
(mol).

(b) Synthesis of Eu(BHHCT) Complex and mSiO
2
Impreg-

nation.The ligand 4,40-bis(1󸀠󸀠,1󸀠󸀠,1󸀠󸀠,2󸀠󸀠,2󸀠󸀠,3󸀠󸀠,3󸀠󸀠-heptafluoro-
4󸀠󸀠,6󸀠󸀠-hexanedion-6󸀠󸀠-yl) chlorosulfo-o-terphenyl (BHHCT)
was prepared as previously reported [32]. In order to form
the complex Eu-BHHCT, 5mg (6.25𝜇mol) of BHHCT ligand
was dissolved in 15mL of propanol. 2.29mg (6.25 𝜇mol) of
EuCl
3
⋅6H
2
O was dissolved in 0.25mL of distilled water and

then added to the BHHCT solution.The mixture was aged at
room temperature in darkness, in order to form the complex.
Then, 5mg of mesoporous silica nanoparticles was added to
the complex solution, and the suspension was kept under
stirring for one night, at room temperature, in darkness. In
order to prevent any leak of the impregnated complex, the
silica coating was elaborated without any purification. How-
ever, after silica coating, Eu3+ content has been determined
by MET-EDX and was found to be 1% (mol).

(c) Aminosilane Coating. In order to avoid the leak of the
impregnated complexes, the nanocapsules were closed by
coating them with a thin silica layer. Typically 30mg of
impregnated silica nanoparticles was dissolved in 80mL of
propanol under ultrasound for 2 h.Then, 8.94mL of NH

4
OH

(28%), 7.5mL of distilled water, and 25𝜇L of TEOS were
added to the mixture and stirred at 40∘C for 2 h. Then,
100 𝜇L of (3-aminopropyl)trimethoxysilane (APTMS) was
added and the mixture stirred for 1 more hour. The reaction
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(a) (b)

Figure 4: SEM (a) and TEM (b) images of synthetized mesoporous silica nanoparticles (mSiO
2
).
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Figure 5: SAXS diagram of synthetizedmesoporous silica nanopar-
ticles (mSiO

2
).

mixture is then centrifuged and washed with propanol, and
the obtained precipitate is dried in oven overnight. The final
weight of the material was approximately 45mg. Note that
the APTMS molecule does not play any role to prevent the
dye release. This molecule has been added at the end of the
coating protocol in order to introduce amine functions which
are very useful for further biofunctionalization.

2.3. Physical and Chemical Characterizations. 1H and
13CNMR spectra were recorded on Bruker Advance
300, with chemical shifts (in ppm) reported relative to
tetramethylsilane. Mass spectra were recorded by FAB or IS
techniques using a Normas R10-10 spectrometer. Elemental
analyses were performed on elementary analyses (EA)
which were performed using a Perkin Elmer 2400 series II
elemental analyser. Chemical bonding was characterized by
infrared spectroscopy using a Perkin Elmer spectrometer
100 series. Samples were prepared by mixing the powders

with potassium bromide (1/100 by weight) in a pellet.
Nitrogen adsorption-desorption curves were measured with
a Belsorp-mini (BEL Japan Inc.) between 0 and 99 p/p

0
at

77 K. Pretreatmentwas performed under vacuumduring 24 h
at 80∘C. Small angle X-ray scattering (SAXS) analyses were
performed on an INEL XRG3D device. Small angle X-ray
scattering signal from mesoporous silica was obtained with
X-rays produced by a Cu anode. The X-ray beam was then
filtered and focused onto the specimen using Kirkpatrick-
Baez mirrors, thus delimiting a small and nondivergent
beam. Scattered intensity was recorded on an imaging plate,
located 38 cm behind the specimen. Particle shape, size, and
composition were examinated by Transmission Electron
Microscopy (TEM) using Philips CM20 FEG microscope,
equipped with EDX detector. This EDX detector was used to
quantify Eu contents of samples. Fluorescence spectra were
recorded with a Fluorolog FL3-22 Jobin Yvon spectrometer
equipped with a R928 Hamamatsu photomultiplier and a
450W excitation lamp. For the analysis of emission decay
versus time, a pulsed Xe source was employed. The emission
decays have been recorded under excitation at 365 nm,
monitoring the 5D

0
→

7F
2
at its maximum (612 nm).

Experimental decays have been calculated according the
formula 𝜏 = [∫∞

0
𝑡 ∗ 𝐼(𝑡)𝑑𝑡]/[∫

∞

0
𝐼(𝑡)], with an error range

estimated to be 15%.

2.4. Cell Culture, Cytotoxicity Test, and Fluorescence Imaging.
An indirect cytotoxicity test was performed using an elution
method as described previously [33].The used cells areMDA-
MB231 which are triple negative breast cancer cells [34].
The cells are maintained in culture in RPMI 1640 medium
complemented with 10% fetal bovine serum, 1% penicillin-
streptomycin and incubated at 37∘Cwith 5%CO

2
. For in vitro

labeling as for cytotoxic tests, cells were placed in 96-well
plate at 10000 cells/well. The particles were added at different
concentrations to the cell medium after sonication.TheMTT
(methyl thiazoletetrazolium, Sigma) test is used to evaluate
the viability of the MDA-MB231 in the presence of different
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2
-
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3
(Phen-Si).

concentrations of the NPs (mSiO
2
-Eu(TTA)

3
(Phen-Si)) one

and three days after their addition to cell culture medium.
MTT test is a colorimetric assay for measuring the activity
of enzymes that reduce MTT to formazan dye, giving a
purple color. DMSO (dimethylsulfoxide) solution is added to
dissolve the insoluble purple formazan product into a colored
solution. The absorbance of this colored solution can be
quantified by measuring at 570 nm by a spectrophotometer.

For in vitro labeling, cells were incubated with NPs
(0.1mg/mL, 24 h). Microscopic images were obtained using
a “home-made” Time Gated Luminescence Microscope
(TGLM) kindly built for us by Dr. Dayong Jin from Mac-
quarie University of Sydney. The main interest of a TGLM

is to be able to separate long-lasting fluorescence coming
from lanthanides from self-fluorescence coming from the
biological media [23].

3. Results and Discussion

3.1. Synthesis of Mesoporous Silica Nanoparticles. The synthe-
sis procedure is based on the protocol proposed by [35]. After
a full optimization procedure with many varying parameters
as reactant concentration (TEOS: 0.93mmol to 4.7mmol and
CTAB: 0.77mmol to 7.1mmol), temperature (25 to 90∘C), and
reaction time (2 to 20 h), we find that the best results (average
size close to 100 nm, spherical shape, no agglomeration,
high surface area, and a high porous volume) were obtained
with the procedure reported in Section 2. Figure 4 shows
SEM images (a) of particles. Average particle size (feret
diameter, counted on 242 particles) is 116 nm with a standard
deviation of 45 nm. On the TEM image of Figure 4(b) one
can clearly see the well-ordered mesoporous structure of
particles. SAXS analysis presented in Figure 5 is characteristic
of a hexagonal MCM 41 well-organized mesostructure [36]
with three visible diffraction peaks: d(100) = 3.37 Å, d(110)
= 2.22 Å, and d(200) = 1.91 Å. The adsorption/desorption
isotherm (BET) experiments done at 77K under nitrogen
give a specific surface area equal to 1018m2 g−1. The average
pore size is centered at 5.476 nmwhereas total porous volume
is estimated at 1.397 cm3 g−1.

3.2. Comparison of Luminescent Properties of Eu Complexes
Incorporated in mSiO

2
. In order to verify that no release of

complexes occurs in aqueous solution we have checked that
nanoplatforms do not lose luminescence intensity (<5%) after
severe water leaching (3× 1 h in water). Then, to compare
performance of the different luminescent nanoplatforms
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(a) (b)

(c) (d)

Figure 8: Electron microscope images and elemental cartography of mSiO
2
-Eu(TTA)

3
(Phen-Si). (a) STEM image, (b) Si cartography, (c) N

cartography, and (d) Eu cartography.

we have recorded an emission spectrum after excitation at
365 nm (laser diode or Hg lamp wave length usually found
onmany epifluorescencemicroscope) under exactly the same
condition (0.25mg⋅mL−1 of NPs in water). Results, presented
in Figure 6, show that all complexes have a maximum
emission band centred around 613 nm. However, emission
intensities, recorded under the same conditions, are different.
The sample presenting the most intense luminescence is
the one with Eu(TTA)

3
(Phen-Si) complex, grafted inside

the mesopores of the mSiO
2
NPs. As this sample presents

the highest luminescent intensity, it has been selected for
further characterization.

3.3. Characterization of the Eu(TTA)
3
(Phen-Si) Complex

Grafted in mSiO
2
. Eu(TTA)

3
(Phen-Si) complex was suc-

cessfully prepared via a two steps process as shown in
Figure 1. Ligand (Phen-Si) was first obtained by reacting 5-
amino-1,10-phenanthroline and 3-(triethoxysilyl)propyl iso-
cyanate (Figure 1(a)). Europium complex was then pre-
pared from Eu(NO

3
)
3
, 2-thenoyltrifluoroacetone (TTA), and

phenantroline ligand (Phen-Si) in the presence of triethy-
lamine in ethanol at 50–60∘C (Figure 1(b)). Figure 7 shows
infrared spectra of Eu(TTA)

3
(Phen-Si) complex, mSiO

2
, and

the sample of mSiO
2
incorporating the complex (mSiO

2
-

Eu(TTA)
3
(Phen-Si)). The spectrum of the complex presents

the characteristic bands of phenanthroline as well as those
of TTA, indicating that the complex has been obtained. On
the mSiO

2
spectrum, the well-known bands of SiO

2
are

observed. The mSiO
2
-Eu(TTA)

3
(Phen-Si) spectrum exhibits

both bands of the complex and mSiO
2
, especially in the

region of 1700–600 cm−1.
The sample mSiO

2
-Eu(TTA)

3
(Phen-Si) has also been

investigated by BET analysis. After loading, the porous
volume decreases down to 0.9570m3⋅g−1 (instead of
1.397m3⋅g−1), as well as the specific area to 684m2⋅g−1
(instead of 1018m2⋅g−1). This loss of porous volume and
specific area confirms that the complex Eu(TTA)

3
(Phen-Si)

is well grafted into the mesopores of the NPs.
Figure 8 presents the elemental cartography obtained by

EDX spectroscopy on STEM microscopy. It can be seen that
after incorporation, mSiO

2
keeps its spherical shape without

any aggregation. EDX spectroscopy results show that silicon
atoms are homogenously dispersed to form the mesoporous
silica matrix (Figure 8(b)). Nitrogen and europium atoms
are also detected, corresponding to the grafted complex
(Figures 8(c) and 8(d)). Images reveal that these elements are
homogenously well dispersed all inside the NPs, confirming
the good repartition of the complex, all around the walls of
the mesoporous silica.

In Figure 9(a) emission spectra of the grafted complex
recorded in ethanol after excitation at 365 nm are gathered.
For the free complex the concentration was 0.25mg⋅mL−1,
corresponding to 2⋅10−4mol⋅L−1 in Eu3+, and for the grafted
complex the concentration was 1mg⋅mL−1, corresponding
to 2⋅10−5mol/L in Eu3+ (considering a grafting rate of
0.1% (mol)). The characteristic emission lines of transitions
5D
0
→

7F
𝐽
of Eu3+ are observed for both samples. Some

differences may be noticed: for instance, the shape of the
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Figure 9: (a) Emission spectra recorded after excitation at 365 nm, (b) excitation spectra recorded at 612 nm, and (c) emission decay curves
recorded at 612 nm under excitation at 365 nm for pure Eu(TTA)

3
(Phen-Si) complex and mSiO

2
-Eu(TTA)

3
(Phen-Si).
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Figure 10: Cytotoxicity test of mSiO
2
-Eu(TTA)

3
(Phen-Si). The

higher is the DO, the higher is the living cells number.

5D
0
→

7F
1
transition and relative intensities of 5D

0
→

7F
4
/5D
0
→

7F
2
. Figure 9(b) presents excitation spectra for

these samples observed at 612 nm. For the free complex, one
broad band centred on 360 nm can be seen. After incorpo-
ration into mSiO

2
this broad band remains, but seems to

be shifted to higher energy, around 330 nm. This is probably
due to the covalent grafting of the complex into mSiO

2
,

which modifies energy transfers from the antenna to Eu3+
ions. The 5D

0
luminescence decays for the free complex and

the complex grafted intomSiO
2
are shown in Figure 9(c).The

free complex exhibits monoexponential decay 𝐼 = 𝐼
0
⋅ 𝑒(−𝑡/𝜏)

with lifetime 𝜏 = 0.6±0.06ms. For grafted complex, the decay
is clearly biexponential: the faster component is the same
as for pure complex, but a slower component with lifetime
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(a) (b)

Figure 11: Internalization of mSiO
2
-Eu(TTA)

3
(Phen-Si) in MDA-MB231 cancer cells after exposure to NPs (overnight, 0.1mg⋅mL−1). (a)

Representative bright field images + UV excitation (𝜆ex: 365 nm, the blue color comes from the nucleus colored with DAPE used to help cells
detection). (b) UV excitation (𝜆ex: 365 nm) and time gated detection of Eu(TTA)

3
(Phen-Si).

estimated to about 1ms is also observed. The average decay,
estimated with the formula 𝜏 = [∫∞

0
𝑡 ∗ 𝐼(𝑡)𝑑𝑡]/[∫

∞

0
𝐼(𝑡)],

is 𝜏 = 0.80 ± 0.08ms. From the comparison of emission
spectra and of emission decays, at least two populations
of Eu3+ are then observed after grafting into mSiO

2
. A

detailed investigation of luminescence data, necessary to
discuss the possible structures of these populations, is beyond
the scope of this paper. It is important to notice here two
essential features for the potential applications.The first point
is the red emission observed for the dispersed NPs and
the pure complex in solution, both excited at 365 nm, that
is, in the organic antenna, and recorded under the same
experimental conditions and have the same intensities. The
other point of interest is that the emission lifetime of the
grafted NPs is suitable for microsecond time gated detection
of luminescence.

3.4. Cytotoxicity Tests on Nanoparticles. The optical density
(OD) is directly proportional to the living cells number.
The comparison of the proliferation of MDA-MB231 cancer
cells, in contact (during 3 days) with growing concentrations
of NPs 0.1; 0.5; 1; and 2mg/mL, emphasizes a significant
decrease of cell viability, and an inhibition of cell growth for
doses of NPs higher than 0.1mg⋅mL−1 (Figure 10). Neverthe-
less, for particles of concentration around 100 𝜇g⋅mL−1, we
consider that the cytotoxicity of NPs is negligible.

3.5. Observation of Particles Fluorescence in Living Cells. The
spherical mSiO

2
-Eu(TTA)

3
(Phen-Si) NPs have been allowed

to react with MDA-MB231 cancer cells under conditions
where NPs are shown to be noncytotoxic (0.1mg⋅mL−1)
overnight. Images in Figure 11 show that NPs have been
internalized by the cells. Indeed, a strong red fluorescence
is observed in their cytoplasm with a higher intensity in the

perinuclear area. The nucleus, stained in blue with DAPE,
appears to be totally free of NPs as shown by time gated
detection. Time gated detection collects the emission light
only 100 𝜇s after the excitation, keeping only the long-lasting
luminescence of Eu3+ and removing all the background
coming from the DAPE dye and self-fluorescence of the
biological media [14].

4. Conclusion

We have synthesized new hybrid nanoplatforms for lumi-
nescent biolabeling based on the concept of Eu3+ com-
plexes encapsulation inside mesoporous silica nanoparticles.
Europium complexes have been selected on the basis of
their capability to be exited at 365 nm which is a wavelength
currently available on routine epifluorescence microscope.
For Eu3+ complexes encapsulation two different routes have
been used: the first route consists in grafting the transition
metal complexes into the silica wall surface. The second way
deals with physicochemical impregnation of the mesoporous
silica NPs with the Eu complex.Then a silica shell coating will
prevent any dye release. For this last protocol, the best result
has been obtained using Eu-BHHCCT complex. However
the best solution appears to be Eu(TTA)

3
(Phen-Si) complex

covalently grafted inside the mesoporous silica NPs.
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E. J. Nassar, and P. S. Caleffi, “Materiais hı́bridos orgânico-
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