Supporting Information

Synthesis, Characterization and DNA Binding Studies of Nanoplumbagin

Sheik Dawood Shahida Parveen,^a Abdullah Affrose, ^a Basuvaraj Suresh kumar, ^a Jamespandi Annaraj, ^a Kasi Pitchumani*^{a,b} ^aSchool of Chemistry, Madurai Kamaraj University, Madurai - 625021, India. ^bCentre for Green Chemistry Processes, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India *Email: pit12399@yahoo.com

Contents

1.	Absorption spectra
2.	FT-IR spectra
3.	¹ H-NMR spectrum
4.	DLS data
5.	XRD pattern
6.	Table of absorption spectra
7.	Table of Redox behaviour

Figure S1 UV-Vis., absorption spectra of *Pn* in aqueous media (1 X $10^{-4}M$). The equivalent quantity of *NPn1* is fully dispersed in aqueous media (1 X $10^{-4}M$).

Figure S2 FT-IR spectra of NPn1 and commercial Pn

Figure S3¹H-NMR spectrum of NPn1

Figure S4 Dynamic light scattering data of NPn1

Figure S5 XRD pattern of NPn1

Table 1 Absorption spectral properties of NPn1 & PLN bounda to HS-DNA in Tris-HCl

buffer at pH 7.1

Compound	R	Red shift Δλ(nm)	$K_{\rm b}({ m M}^{-1})$
	0	-	
	0.2	1	
NPn1	0.4	2	
	0.6	3	20 104
	0.8	4	2.9 X 10
	1	5	
	0	_	
	0.2	-	
PLN	0.4	-	F O 1 O 3
	0.6	-	5.3 x10°
	0.8	1	
	1	2	

Table 2 Redox behaviour of NPn1 and PLN in the presence and absence of DNA^a

Compound	R	E _{pc} (mV)	$E_{pa}(mV)$	$\Delta E_p(mV)$	E _{1/2} (mV)	i _{pa} /i _{pc}	K ₊ /K ₂₊
NPn1	0	-336	-286	50	-311	0.92	
	0.2	-333	-285	48	-309	0.89	
	0.4	-331	-283	48	-307	0.88	1 34
	0.6	-324	-282	42	-303	0.00	1.34
	0.8	-322	-282	40	-302	0.86	
	1	-318	-282	36	-300	0.82	
	0	-313	-265	48	-289	0.87	
PLN	0.2	-309	-262	42	-286	0.83	
	0.4	-307	-262	45	-283	0.81	1 18
	0.6	-305	-261	44	-282	0.81	1.10
	0.8	-304	-260	44	-282	0.79	
	1	-302	-261	41	-281	0.77	

^aCompounds were taken in Tris-HCl buffer pH and DNA taken in DMSO-buffer mixture at 7.1 pH.

* $E_{1/2}$ is the equivalent of the average of E_{pc} and E_{pa} in CV experiments and ΔE is the pulse amplitude (50 mV) R = [DNA/[compound].

Measured Vs Ag/AgCl electrolyte: Scan rate=50 mVs⁻¹; supporting electrolyte 5 mM Tris-HCl / 50 mM NaCl; [compound] = 100 μ M.