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Spectroscopic ellipsometry study was employed for phase pure VO
2
(M
1
) thin films grown at different oxygen partial pressures

by reactive magnetron sputtering. The optical constants of the VO
2
(M
1
) thin films have been determined in a photon energy

range between 0.73 and 5.05 eV. The near-infrared extinction coefficient and optical conductivity of VO
2
(M
1
) thin films rapidly

increase with decreasing O
2
-Ar ratios. Moreover, two electronic transitions can be uniquely assigned. The energy gaps correlated

with absorption edge (𝐸
1
) at variedO

2
-Ar ratios are almost the same (∼2.0 eV); consequently, the absorption edge is not significantly

changed. However, the optical band gap corresponding to semiconductor-to-metal phase transition (𝐸
2
) decreases from 0.53 to

0.18 eV with decreasing O
2
-Ar ratios.

1. Introduction

Vanadium dioxide (VO
2
), one of the most interesting

transition metal oxides, exhibits a reversible first-order
semiconductor-to-metal phase transition (SMT) at a critical
temperature 𝑇

𝑐
= 68∘C (for bulk single crystal VO

2
) [1].

VO
2
has a tetragonal rutile structurewith the P4

2
/mnm space

group (R phase) above the phase transition temperature,
where the partially filled d

//
band localized at the Fermi level

and the rutile phase ismetallic [2]. Below the phase transition
temperature, it transforms to a monoclinic structure with the
P2
1
/c space group (M

1
phase), in which the partially filled d

//

band splits into an unoccupied part being pushed past the 𝜋∗
band and a filled part with the d

//
band dropping below the

Fermi level, thus opening up a bandgap of ∼0.6 eV between
𝜋∗ and the filled part of d

//
band [2]. Dramatic changes in the

electrical and optical properties across the SMT make VO
2

thin films suitable for many applications, such as switching
devices, sensors, and smart windows [3–6].

It has been noted that oxygen partial pressure has effects
on the structural and resistivity transition behaviors of VO

2

[7]. Although the optimized oxygen partial pressure to fab-
ricate VO

2
films on glass and the optical properties of those

sampleswere investigated [8], the optical constants, especially
extinction coefficient 𝑘, which is crucial in understanding
band structures, are not involved. Moreover, two energy gaps
𝐸
1
and 𝐸

2
are not distinguished as well.

Low visible transparency and unfavorable yellowish
colour, which are correlated with absorption edges, limit
the application of VO

2
smart windows. For most practical

applications the phase transition temperature 𝑇
𝑐
needs to be

in the vicinity of room temperature (∼25∘C) and the 𝑇
𝑐
may

be assumed to be correlated with the optical band gap 𝐸
2
.

Consequently, the distinguishment of 𝐸
1
and 𝐸

2
plays an

important role in improving the performance of VO
2
.

In this research, we thoroughly investigated the effects
of oxygen partial pressures on the optical constants and
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Figure 1: Raman (a) and XRD (b) spectra for VO
2
films deposited at different O

2
-Ar ratios.

the electronic transition behaviors of phase pure VO
2
(M
1
)

thin films deposited on quartz glass by reactive magnetron
sputtering. Moreover, two electronic transitions related to
absorption edge (𝐸

1
) and SMT (𝐸

2
) were distinguished.

2. Experimental Section

VO
2
thin films with a thickness of ∼70 nm were deposited

using a reactive rf magnetron sputtering system with a water-
cooled vanadium metal target (50mm in diameter, 99.9%
purity). Quartz glasses (20 × 20 × 1mm) were used as
substrates and they were ultrasonically cleaned in acetone
and subsequently in ethanol for 15min, respectively, and then
dried with pure nitrogen flow.

After being pumped down to a base pressure of 5 ×
10
−4 Pa, the deposition chamber was filled with high purity

(99.999%) Ar and O
2
mixture gas. The O

2
-Ar ratio was fixed

as 1.0 : 49.0, 1.5 : 48.5, and 2.0 : 48.0, respectively (the unit
is sccm). The total gas pressure was maintained at ∼1.0 Pa.
An rf power of 200W was applied to the V target. During
deposition, the substrate temperature was kept at 450∘C for
the better crystallinity of VO

2
thin films. To improve the film

homogeneity, the substrates were rotated along the vertical
axis at a speed of 10 rpm.

The structure of the films was characterized by Raman
spectrometer (Renishaw inVia Raman microscope) using
a 514.5 nm laser. The optical transmittance was measured
at a photon energy range of 0.73–5.05 eV at 26∘C and
95∘C by a spectrophotometer (Hitachi Corp., Model UV-
4100). Temperature was measured using a PT100 temper-
ature sensor in contact with the films and was controlled
via a temperature controlling unit. Heating was controlled
through a temperature-controlling unit. Hysteresis loops
were measured by collecting the transmittance of films at
a fixed photon energy (0.83 eV) at a temperature interval
of ∼2.0∘C. Spectroscopic ellipsometry (SE J. A. Woollam
M-2000) measurements were carried out between photon

energies of 0.73 and 5.05 eV at 75∘ angle of incidence and the
results were modeled using a commercial software.

3. Results and Discussion

3.1. Structural Characterization. Raman measurements were
conducted to examine the effect of O

2
-Ar ratio on the

microstructure of VO
2
(Figure 1(a)).The Raman spectrum at

room temperature shows characteristic vibration modes for
the M

1
semiconducting phase of VO

2
. Comparing to previ-

ous works, Raman peaks are identified as 194(Ag), 223(Ag),
262(Bg), 307(Bg), 391(Ag), 492(Ag), and 618(Ag) cm−1 [9–
11]. No Raman shifts for other kinds of vanadium oxides and
any types of other polymorphs of VO

2
(M
2
/T) [12, 13] were

identifiedwithin themeasurement accuracy (±0.2 cm−1).The
XRD spectra are shown in Figure 1(b). All peaks can be
indexed to VO

2
(M) and (011) was the prominent plane for

VO
2
thin film. No reflections due to other VO

𝑥
phases such

as V
4
O
7
, V
6
O
13
and V

3
O
7
were observed [14, 15].

3.2. Optical Properties of the VO
2
Films. Figures 2(a) and

2(b) show the transmittance and absorptivity spectra of the
prepared VO

2
thin films at different O

2
-Ar ratios. The SMT

transition is clearly observed with a dramatic change in
the infrared transmittance with varied temperature ranges.
The absorption edge, luminous (lum) transmittance (𝑇lum,
1.64–3.27 eV), and near-infrared (NIR) transmittance (0.73–
1.64 eV) at the high temperature of 95∘Cwere almost the same
for all of the samples studied here. However, low temperature
(below 26∘C) phase VO

2
(M
1
) showed a gradually decreased

NIR transmittance but increased absorptivitywith decreasing
O
2
-Ar ratios.
Thermooptical hysteresis curves were deduced by mea-

suring the transmittance at 0.83 eV with varying temper-
atures, which are shown in Figure 2(c). For comparison,
the vertical axis of this figure has been normalized as 𝑋.
From the 𝑋-temperature (𝑇) data, a plot of 𝑑𝑋/𝑑𝑇 was
obtained, yielding one peak with a well-defined maximum.
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Figure 2: (a) Transmittance spectra of VO
2
films deposited at different O

2
-Ar ratios. Solid and dashed lines refer to low temperature

(26∘C) and high temperature (95∘C), respectively. (b) Low temperature (M
1
phase) absorptivity spectra. Thermal hysteresis loops of optical

transmittance at photon energy of 0.83 eV and phase transition temperature 𝑇
𝑐
are shown in (c) and (d).

Each of the 𝑑𝑋/𝑑𝑇 curves has been analyzed with a Gaussian
function using the single peak fittingmodule ofOriginpro 8.0
software. The temperature corresponding to the maximum
of 𝑑𝑋/𝑑𝑇 was defined as the phase transition temperature
during a heating/cooling cycle; 𝑇

1
and 𝑇

2
represent the SMT

temperature of heating and cooling branches, respectively.
The SMT temperature was defined as 𝑇

𝑐
= (𝑇
1
+ 𝑇
2
)/2. As

shown in Figure 2(d), the SMT temperatures were 46.2∘C,
59.8∘C, and 66.4∘C for VO

2
films deposited at the O

2
-Ar ratio

of 1.0 : 49.0, 1.5 : 48.5, and 2.0 : 48.0, respectively. The phase
transition temperature𝑇

𝑐
consistently decreased as theO

2
-Ar

ratio decreased. It was pointed out that vanadium interstitials

and/or oxygen vacancies could reduce the SMT temperature
of VO

2
[16], which is also responsible for the decreased SMT

temperatures at low O
2
-Ar ratios of this work. Low O

2
-Ar

ratios can introduce both extra electrons and internal strains
in nonstoichiometric VO

2
(related data was revealed in a

paper submitted to Thin Solid Films, Manuscript Number:
TSF-D-13-00641).

3.3. Optical Constant. The electronic transitions, optical
constants, and optical band gap (OBG) in the vicinity of
the phase transition temperature have been investigated
by Li et al. [17]. For a standard bulk VO

2
sample, when
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Figure 3: Refractive index 𝑛, extinction coefficient 𝑘, and optical conductivity 𝜎
𝑟
of low temperature phase VO

2
deposited at different O

2
-Ar

ratios.

temperature was increased to 67∘C, contributions from the
Drude response become more prominent. The extinction
coefficient 𝑘 and the optical conductivity 𝜎

𝑟
values at the NIR

region rapidly increase with increasing temperature. In this
research, electron concentration increases with decreasing
O
2
-Ar ratios and the Drude response is also responsible for

the increased 𝑘 and 𝜎
𝑟
value at the NIR region (Figure 3).

However, refractive index 𝑛 was not significantly changed.

3.4. Band Gap. The indirect OBG can be estimated using the
power law:

(𝛼𝐸)
1/2
∝ (𝐸 − 𝐸

𝑔
) , (1)

where 𝛼 = 4𝜋𝑘/𝜆 is the absorption coefficient and 𝐸
𝑔
is

the OBG energy. The 𝐸
𝑔
value is extrapolated by the linear

portion of the plot to (𝛼𝐸)1/2 = 0.

Two electronic transitions can be uniquely assigned, as
shown in Figures 4(a) and 4(b). The gaps correlated with
absorption edge (𝐸

1
) at varied O

2
-Ar ratios are almost the

same (∼2.0 eV); consequently, the absorption edge was not
significantly changed, as shown in Figure 2(a). However, the
optical band gap corresponding to SMT (𝐸

2
) decreases from

0.53 to 0.18 eV with decreasing O
2
-Ar ratios, as shown in

Figures 4(b) and 4(d). The OBG 𝐸
2
of semiconducting VO

2

can be assigned to the indirect transition from the top of
filled d

//
bands to the bottom of empty 𝜋∗ band, as shown

using a red arrow in Figure 4(c). Note that 𝐸
2
at an O

2
-Ar

ratio of 2.0 : 48.0 is similar to that from a previous report
by theoretical calculation (0.6 eV) [18] and experimental
results by photoemission spectroscopy (0.6 eV) [2]. Besides,
the 0.41 eV band gap of the VO

2
film prepared at an O

2
-Ar

ratio of 1.5 : 48.5 agrees to a calculated intermediate structure
at 339.8 K (0.36 eV) [18]. 𝐸

2
at 1.0 : 49.0 O

2
-Ar ratio further

decreased to 0.18 eV.
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Figure 4: (a) and (b) (𝛼𝐸)1/2 versus 𝐸 which is determined from extinction coefficient 𝑘 and the extrapolating dashed lines are drawn to
obtain the value of the band gap 𝐸

1
and 𝐸

2
, respectively. (b) is the enlarged low photon energy portion of (𝛼𝐸)1/2 versus 𝐸. (c) Schematic

diagram of electronic band structures in the VO
2
film. (d) Variation of optical band gap 𝐸

2
of VO

2
thin films deposited at different O

2
-Ar

ratios.

When decreasing O
2
-Ar ratios, the filled d

//
bands and

the empty 𝜋∗ band are shifted to the higher and lower
energy, respectively. Both the d

//
and 𝜋∗ bands gradually

moved closely, resulting in a redshift of 𝐸
2
. The decreasing

𝐸
2
results in a decrement in the SMT energies; therefore the

SMT temperature decreased with decreasing O
2
-Ar ratios.

Moreover, with decreasing the O
2
-Ar ratio, the NIR trans-

mittance of the film evidently decreases. This behavior is
because the bandgap𝐸

2
of the film, which is narrowing at low

O
2
-Ar ratios, is different at the distinct O

2
-Ar ratio regions.

It can enhance the electronic transitions and results in more
interband absorptions at lower O

2
-Ar ratios, as shown in

Figure 2(b).

4. Conclusions

To summarize, diverse phase transformation properties are
reported for phase pure VO

2
(M
1
) thin films grown at

different oxygen partial pressures by reactive magnetron
sputtering. The transmittance and absorptivity spectra below
phase transition temperatures are closely related to O

2
-Ar

ratios. The phase transition temperature 𝑇
𝑐
decreased from

66.4∘C to 46.2∘C as the O
2
-Ar ratio decreased from 2.0 : 48.0

to 1.0 : 49.0. The optical constants of the VO
2
(M
1
) thin

films have been determined between 0.73 and 5.05 eV. The
near-infrared extinction coefficient 𝑘 and optical conduc-
tivity 𝜎

𝑟
increase with decreasing O

2
-Ar ratios. Moreover,
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two electronic transitions were identified. The energy gaps
correlated with absorption edge at varied O

2
-Ar ratios are

almost the same, while the optical band gap corresponding
to semiconductor-to-metal phase transition decreases from
0.53 to 0.18 eV with decreasing O

2
-Ar ratios.
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