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Because nanocomposites have found augmented use in many industries, the analytical solutions are required to be developed.This
paper presents the development of a new analytical method for studying nanotube structures under tension using layer-wise and
Eringen theories. Two opposite ends of tubes are subjected to normal forces. Nonlocal governing differential equations are derived
and presented. The theoretical developments determine the effect of the geometric and nonlocal constitutive relations for single-
walled nanotubes (SWNTs), double-walled nanotubes (DWNTs), and multiwalled nanotubes (MWNTs) under tension loading. It
is observed that all displacement components increase with the increase in the nonlocal parameter.

1. Introduction

Carbon nanotubes (CNTs) have been used as multifunc-
tional materials while analytical and numerical analyses are
required to be performed for CNT structures. Naghashpour
and Hoa [1, 2] dispersed CNTs into polymer composites
to produce multifunctional polymer composites. Significant
amount of experimental work on the use of CNTs in com-
posites is being conducted while analytical and numerical
analyses are required to be performed to obtain the properties
and behaviors of nanocomposites.

The vast majority of structural theories are derived using
the constitutive assumptions that the stress at a point depends
only on the strain at that point. Many investigations were
made on the development of analytical solutions to analyse
the composite structures [3, 4]while it remains to be observed
whether these solutions can be applied to make analyses for
nanostructures. Continuum based analyses have been gener-
ally utilized for the formulation of different nanostructures.
Twomain reasons are mentioned. One is experimental inves-
tigations in nanoscale that are difficult.The other ismolecular
dynamic simulations being highly computationally expensive
for nanostructures. Over the past decade, some researchers
have applied classical continuum mechanics such as Euler-
Bernoulli theory, Timoshenko beam theory, and Kirchhoff ’s
plate theory to predict the behavior of nanostructures [5, 6].

The nonlocal constitutive behaviour developed by Erin-
gen [7–10] is based on the hypothesis that the stress at a
point is a function of strains at all points in the continuum.
The nonlocal elasticity theory was used for linear isotropic
nonlocal solids by Eringen and Kim [11], in such a way that
the nonlocal theory differs from the local theory in the stress-
strain constitutive relations. Since the classical continuum
elasticity is a scale-free theory, the use of classical continuum
models may be not able to be relied on in the analysis of
structural elements in nanoscale such as CNTs and graphene
sheets. There are different modified classical continuum the-
ories which capture size effects such as couple stress the-
ory [12], strain gradient elasticity theory [13], modified
couple stress theory [14, 15], and nonlocal elasticity theory
[7–11]. Among all size-dependent theories, the nonlocal
elasticity theory has been frequently used in the theoretical
investigations of structures at small scale [16–21]. Heireche et
al. [18] analysed the wave propagation in CNTs by developing
a single-elastic beam model using nonlocal elasticity. By
considering small-scale effect, the buckling behavior of
nanoscale circular plates under uniform radial compression
was investigated [20]. Mohammadi et al. [21] investigated the
free vibration behavior of circular and annular graphene sheet
by utilizing elasticity theory. They also derived the governing
equations for single-layered graphene sheets (SLGS). Reddy
[22–24] used different beam theories including those of
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Figure 1: Schematic sketch of SWNT under axial force and the loca-
tion of coordinate axes.

Euler-Bernoulli, Timoshenko, and Levinson to analyze bend-
ing, buckling, and vibration of nonlocal beams. In his study,
different displacement functions were selected in the first
step and then all steps were redone when deriving beam equi-
librium and equations of motion. Recently, a finite element
method was developed for a nonlocal Timoshenko beam
model [25]. The model was based on the key idea that non-
local effects include long-range volume forces and moments
exchanged by nonadjacent beam segments.

It is found from the presented works that there is a lack
of research for developing a modeling method that analyzes
the mechanical response of nanotubes under extension. Even
though a lot of researchers have considered nanotube as a
sheet for their analysing, a tube structure is considered here to
develop a displacement based theory to analysis of nanotubes.
In the current work, we are studying the deformation of
nanotube structures under axial forces based on the nonlocal
elasticity theory in which the small-scale effects are taken
into account.The displacement based governing equations of
layer-wise theory are developed.Then, the nonlocal constitu-
tive relations are used to express the stress resultants in terms
of the generalized displacements. Finally, the equations are
solved for specified axial force. The formulations show that
the nonlocal parameter has prominent effect on the behavior
of nanotube structures. It is anticipated that the results of
the present work would be helpful for designing composite
structures using SWNT or/and DWNT or/and MWNT.
In addition, since direct experimental measurements are
impractical due to the very small size of CNTs, the developed
theoretical approach provides good alternative.

2. Theoretical Formulation

2.1. Displacement Field. SWNT, DWNT, and MWNT with
mean radius 𝑅 and thickness ℎ are subjected to a torque as
shown in Figures 1, 2, and 3, respectively. The cylindrical
coordinates (𝑥, 𝜃, 𝑟) are placed at the middle wall of the
nanotubes so that 𝑥 and 𝑟 are the axial and radial coordinate,
respectively. The integration of the appropriate linear strain-
displacement relations of elasticity within cylindrical coordi-
nate system will yield the following displacement field for the
𝑘th wall:

𝑢
(𝑘)

1 (𝑥, 𝜃, 𝑟) = 𝑥𝑟 (𝐶
(𝑘)

5 cos 𝜃 +𝐶
(𝑘)

4 sin 𝜃) +𝐶
(𝑘)

6 𝑥

+ 𝑢
(𝑘)

(𝜃, 𝑟) ,

(1a)
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Figure 2: Schematic sketch ofDWNTand the location of coordinate
axes.
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Figure 3: Schematic sketch of MWNT and the location of coordi-
nate axes.

𝑢
(𝑘)

2 (𝑥, 𝜃, 𝑟) = 𝑥 (𝐶
(𝑘)

1 cos 𝜃 −𝐶
(𝑘)

2 sin 𝜃 −𝐶
(𝑘)

3 𝑟)

−
1
2
𝑥
2
(𝐶
(𝑘)

4 cos 𝜃 −𝐶
(𝑘)

5 sin 𝜃)

+ V(𝑘) (𝜃, 𝑟) ,

(1b)

𝑢
(𝑘)

3 (𝑥, 𝜃, 𝑟) = 𝑥 (𝐶
(𝑘)

1 sin 𝜃 +𝐶
(𝑘)

2 cos 𝜃)

−
1
2
𝑥
2
(𝐶
(𝑘)

5 cos 𝜃 +𝐶
(𝑘)

4 sin 𝜃)

+𝑤
(𝑘)

(𝜃, 𝑟) ,

(1c)

where 𝑢(𝑘)1 (𝑥, 𝜃, 𝑟), 𝑢(𝑘)2 (𝑥, 𝜃, 𝑟), and 𝑢
(𝑘)
3 (𝑥, 𝜃, 𝑟) represent the

displacement components in the 𝑥, 𝜃, and 𝑟 directions,
respectively, of a material point located at (𝑥, 𝜃, 𝑟) in the 𝑘th
wall of the nanotube in Figures 1, 2, and 3. In order to satisfy
the interfacial continuities of the displacement components,
it is necessary for the integration constants appearing in (1a),
(1b), and (1c) to be the same for all walls. Thus, relations (1a),
(1b), and (1c) are presented as

𝑢
(𝑘)

1 (𝑥, 𝜃, 𝑟) = 𝑥𝑟 (𝐶5 cos 𝜃 +𝐶4 sin 𝜃) +𝐶6𝑥

+ 𝑢
(𝑘)

(𝜃, 𝑟) ,

(2a)
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𝑢
(𝑘)

2 (𝑥, 𝜃, 𝑟) = 𝑥 (𝐶1 cos 𝜃 −𝐶2 sin 𝜃 −𝐶3𝑟)

−
1
2
𝑥
2
(𝐶4 cos 𝜃 −𝐶5 sin 𝜃)

+ V(𝑘) (𝜃, 𝑟) ,

(2b)

𝑢
(𝑘)

3 (𝑥, 𝜃, 𝑟) = 𝑥 (𝐶1 sin 𝜃 +𝐶2 cos 𝜃)

−
1
2
𝑥
2
(𝐶5 cos 𝜃 +𝐶4 sin 𝜃)

+𝑤
(𝑘)

(𝜃, 𝑟) .

(2c)

Moreover, in (2a) 𝑢(𝑘)(𝜃, 𝑟) can be replaced by −𝐶1𝑟sin 𝜃 +

𝑢
(𝑘)
(𝜃, 𝑟); it can be verified that the terms involving 𝐶1 in

(2a), (2b), and (2c) correspond to an infinitesimal rigid-
body rotation. These terms will, therefore, be ignored in the
following developments since they will generate no strain.
Similarly, it can be readily shown that the terms involving 𝐶2
must also be eliminated since they represent another rigid-
body rotation of the tube. Furthermore, as long as the loading
conditions at the two ends of the nanotube are identical, the
constant 𝐶4 must vanish in order to satisfy the symmetry
condition in deformation 𝑢

(𝑘)
3 (𝑥, 𝜃, 𝑟) = 𝑢

(𝑘)
3 (−𝑥, −𝜃, 𝑟). It

is thus concluded that the most general form of the dis-
placement field for the 𝑘th wall of a nanotube is given as

𝑢
(𝑘)

1 (𝑥, 𝜃, 𝑟) = 𝐶5𝑥𝑟 cos 𝜃 +𝐶6𝑥+ 𝑢
(𝑘)

(𝜃, 𝑟) , (3a)

𝑢
(𝑘)

2 (𝑥, 𝜃, 𝑟) = −𝐶3𝑟𝑥 +
1
2
𝐶5𝑥

2 sin 𝜃 + V(𝑘) (𝜃, 𝑟) , (3b)

𝑢
(𝑘)

3 (𝑥, 𝜃, 𝑟) = −
1
2
𝐶5𝑥

2 cos 𝜃 +𝑤
(𝑘)

(𝜃, 𝑟) . (3c)

2.2. Layer-Wise Theory (LWT). Various theories such as
the equivalent single-layer theories are unable to precisely
represent the local phenomena in laminated composites. But
then, the LWTs, which allow each layer of the laminate to
act like a real three-dimensional layer, are able to present
excellent results in definition of the localized phenomena. In
LWT, the displacement components of a generic point in the
laminate are conveniently given as

𝑢1 (𝑥, 𝜃, 𝑧) = 𝑢𝑘 (𝑥, 𝜃)Φ𝑘 (𝑧) , (4a)

𝑢2 (𝑥, 𝜃, 𝑧) = V𝑘 (𝑥, 𝜃)Φ𝑘 (𝑧) , (4b)

𝑢3 (𝑥, 𝜃, 𝑧) = 𝑤𝑘 (𝑥, 𝜃)Φ𝑘 (𝑧)

(𝑘 = 1, 2, . . . , 𝑁 + 1) ,
(4c)

with 𝑘, here and in what follows, being a dummy index
implying summation of terms from 𝑘 = 1 to 𝑘 = 𝑁 + 1. In
(4a), (4b), and (4c), 𝑢1, 𝑢2, and 𝑢3 denote the displacement
components in the 𝑥, 𝜃, and 𝑟 directions, respectively. Also,
𝑢𝑘(𝑥, 𝜃), V𝑘(𝑥, 𝜃), and𝑤𝑘(𝑥, 𝜃) represent the displacements of
the points initially located on the 𝑘th wall of the nanotube in
the 𝑥, 𝜃, and 𝑟 directions, respectively. Furthermore,Φ𝑘(𝑧) is
the global Lagrangian interpolation function that is used for

the discretization of the displacement through thickness.The
linear global interpolation function is defined as

𝜙𝑘 (𝑧) =

{{{{{{{

{{{{{{{

{

0 𝑧 ≤ 𝑧𝑘−1

𝜓
2
𝑘−1 (𝑧) 𝑧𝑘−1 ≤ 𝑧 ≤ 𝑧𝑘

𝜓
1
𝑘 (𝑧) 𝑧𝑘 ≤ 𝑧 ≤ 𝑧𝑘+1

0 𝑧 ≥ 𝑧𝑘+1

(𝑘 = 1, 2, . . . , 𝑁 + 1) ,

(5)

where 𝜓𝑗
𝑘
(𝑗 = 1, 2) are the local Lagrangian linear interpola-

tion functions within the 𝑘th wall which are defined as

𝜓
1
𝑘 (𝑧) =

1
ℎ𝑘

(𝑧𝑘+1 − 𝑧) ,

𝜓
2
𝑘 (𝑧) =

1
ℎ𝑘

(𝑧 − 𝑧𝑘) ,

(6)

where ℎ𝑘 is the thickness of the 𝑘th wall.
Based on the reduced elasticity displacement field in (3a),

(3b), and (3c), the LWT displacement field in (4a), (4b), and
(4c) is rewritten as

𝑢
(𝑘)

1 (𝑥, 𝜃, 𝑧) = 𝐶5𝑥 (𝑅+ 𝑧) cos 𝜃 +𝐶6𝑥

+𝑈𝑘 (𝜃)Φ𝑘 (𝑧) ,

(7a)

𝑢
(𝑘)

2 (𝑥, 𝜃, 𝑧) = −𝐶3 (𝑅 + 𝑧) 𝑥 +
1
2
𝐶5𝑥

2 sin 𝜃

+𝑉𝑘 (𝜃)Φ𝑘 (𝑧) ,

(7b)

𝑢
(𝑘)

3 (𝑥, 𝜃, 𝑧) = −
1
2
𝐶5𝑥

2 cos 𝜃 +𝑊𝑘 (𝜃)Φ𝑘 (𝑧) . (7c)

By introducing 𝑟 = 𝑅 + 𝑧 and considering thin-shell assump-
tion (i.e., 1 + 𝑧/𝑅 ≈ 1), the strain-displacement relations are
given as

𝜀𝑥 =
𝜕𝑢1
𝜕𝑥

,

𝜀𝜃 =
1
𝑅

𝜕𝑢2
𝜕𝜃

+
𝑢3
𝑅
,

𝛾𝑥𝜃 =
𝜕𝑢2
𝜕𝑥

+
1
𝑅

𝜕𝑢1
𝜕𝜃

,

𝛾𝜃𝑧 =
1
𝑅

𝜕𝑢3
𝜕𝜃

+
𝜕𝑢2
𝜕𝑧

−
𝑢2
𝑅
,

𝛾𝑥𝑧 =
𝜕𝑢3
𝜕𝑥

+
𝜕𝑢1
𝜕𝑧

,

𝜀𝑧 =
𝜕𝑢3
𝜕𝑧

.

(8)
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Substitution of (7a), (7b), and (7c) into the strain-displace-
ment relations (8) yields the following results:

𝜀𝑥 = (𝑅+ 𝑧) 𝐶5 cos 𝜃 +𝐶6,

𝜀𝜃 = (𝑉
󸀠

𝑘 +𝑊𝑘)
Φ𝑘

𝑅
,

𝜀𝑧 = 𝑊𝑘Φ
󸀠

𝑘,

𝛾𝜃𝑧 = (𝑊
󸀠

𝑘 −𝑉𝑘)
Φ𝑘

𝑅
+𝑉𝑘Φ

󸀠

𝑘,

𝛾𝑥𝑧 = 𝑈𝑘Φ
󸀠

𝑘,

𝛾𝑥𝜃 = −𝐶3 (𝑅 + 𝑧) +𝑈
󸀠

𝑘

Φ𝑘

𝑅
.

(9)

In (9) and what follows, a prime indicates an ordinary
differentiation with respect to an appropriate variable (i.e.,
either 𝜃 or 𝑧). The equilibrium equations of a straight tube
with 𝑁 numerical walls are obtained by employing (9) in
the principle of minimum total potential energy. The results
are, in general, 3(𝑁 + 1) local equilibrium equations corre-
sponding to 3(𝑁+1) unknown functions𝑈𝑘,𝑉𝑘, and𝑊𝑘 and
three global equilibrium equations associated with the three
parameters 𝐶3, 𝐶5, and 𝐶6.

According to the principle of minimum total potential
energy at the equilibrium configuration of a body the vari-
ation of the total potential energyΠ of the body must vanish.
That is,

𝛿Π ≡ 𝛿𝑈+𝛿𝑉 = 0, (10)

where 𝛿𝑈 is the variation of total strain energy of the body as
follows:

𝛿𝑈 = ∫

𝑎

−𝑎

∫

ℎ/2

−ℎ/2
∫

𝜋

−𝜋

(𝜎𝑥𝛿𝜀𝑥 + 𝜎𝜃𝛿𝜀𝜃 + 𝜎𝑧𝛿𝜀𝑧 + 𝜎𝜃𝑧𝛿𝛾𝜃𝑧 + 𝜎𝑥𝑧𝛿𝛾𝑥𝑧 + 𝜎𝑥𝜃𝛿𝛾𝑥𝜃) 𝑑𝜃 𝑑𝑧 𝑑𝑥. (11)

In (9), 𝑉 is negative of the work done on the body by the
specified external forces. Here, 𝑉 = −2𝐹0 ⋅ 𝑢1(𝑥 = ±𝑎, 𝜃, 𝑧) =

−2𝐹0𝐶6𝑎 and, therefore, 𝜕𝑉 = −2𝐹0𝜕𝐶6𝑎. Also, the variations
of strains in (11) are found as

𝛿𝜀𝑥 = 𝛿𝐶5 (𝑅 + 𝑧) cos 𝜃 + 𝛿𝐶6,

𝛿𝜀𝜃 = (𝛿𝑉
󸀠

𝑘 + 𝛿𝑊𝑘)
Φ𝑘

𝑅
,

𝛿𝜀𝑧 = 𝛿𝑊𝑘Φ
󸀠

𝑘,

𝛿𝛾𝜃𝑧 = (𝛿𝑊
󸀠

𝑘 − 𝛿𝑉𝑘)
Φ𝑘

𝑅
+𝛿𝑉𝑘Φ

󸀠

𝑘,

𝛿𝛾𝑥𝑧 = 𝛿𝑈𝑘Φ
󸀠

𝑘,

𝛿𝛾𝑥𝜃 = − 𝛿𝐶3 (𝑅 + 𝑧) + 𝛿𝑈
󸀠

𝑘

Φ𝑘

𝑅
.

(12)

Employing the fundamental lemma of calculus of variations
the equilibrium equations and the associated boundary con-
ditions of a laminate under tension are obtained as

𝛿𝑈𝑘:𝑄
𝑘

𝑥 −
1
𝑅

𝑑𝑀
𝑘
𝑥𝜃

𝑑𝜃
= 0, (13a)

𝛿𝑉𝑘:𝑄
𝑘

𝜃 −
1
𝑅
(
𝑑𝑀
𝑘
𝜃

𝑑𝜃
+𝑅
𝑘

𝜃) = 0, (13b)

𝛿𝑊𝑘:
1
𝑅
(𝑀
𝑘

𝜃 −
𝑑𝑅
𝑘
𝜃

𝑑𝜃
)+𝑁

𝑘

𝑧 = 0, (13c)

𝛿𝐶3: ∫
𝜋

−𝜋

∫

ℎ/2

−ℎ/2
𝜎𝑥𝜃 (𝑅 + 𝑧) 𝑑𝑧 𝑑𝜃 = 0, (14a)

𝛿𝐶5: ∫
𝜋

−𝜋

∫

ℎ/2

−ℎ/2
𝜎𝑥 (𝑅 + 𝑧) cos 𝜃 𝑑𝑧 𝑑𝜃 = 0, (14b)

𝛿𝐶6: ∫
𝜋

−𝜋

∫

ℎ/2

−ℎ/2
𝑅𝜎𝑥𝑑𝑧 𝑑𝜃 = 𝐹0, (14c)

where 𝐹0 indicates the prescribed value of axial force applied
at the two ends of the nanotube. Also, the following traction-
free boundary conditions must be satisfied:

𝑅
𝑘

𝜃 = 𝑄
𝑘

𝑥 = 𝑁
𝑘

𝑧 = 0 (at 𝑧 = ±
ℎ

2
) , (15)

where the generalized stress and moment resultants are
defined as

(𝑁
𝑘

𝑧 , 𝑄
𝑘

𝑥, 𝑄
𝑘

𝜃) = ∫

ℎ/2

−ℎ/2
(𝜎𝑧, 𝜎𝑥𝑧, 𝜎𝜃𝑧)Φ

󸀠

𝑘𝑑𝑧,
(16a)

(𝑀
𝑘

𝜃 ,𝑀
𝑘

𝑥𝜃, 𝑅
𝑘

𝜃) = ∫

ℎ/2

−ℎ/2
(𝜎𝜃, 𝜎𝑥𝜃, 𝜎𝜃𝑧)Φ𝑘𝑑𝑧. (16b)

It is to be noted that, in (15) and (16a) and (16b), the super-
script 𝑘 refers to the 𝑘th wall in the nanotube.

3. Nonlocal Theory (Constitutive Relations)

According to Eringen [7–9], the stress field at a point 𝑥 in
an elastic continuum depends not only on the strain field
at the point but also on strains at all other points of the
body. Eringen applied this fact to the atomic theory of lat-
tice dynamics and experimental observations on phonon
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dispersion.The integral constitutive relations in an equivalent
differential form are presented based on Eringen [7–9] as

(1−𝜇∇
2
) 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑚𝑛𝜀𝑚𝑛, (17)

where ∇
2 and 𝜇 = (𝑒0𝑎)

2 are the Laplacian operator and
nonlocal parameter, respectively. In addition, 𝑒0 and 𝑎 are a
material constant and internal characteristic length, respec-
tively. From both consideration of (17) and Hook’s law, it is
written that

(1−𝜇∇
2
)

(
(
(
(
(
(

(

𝜎
𝑛𝑙
𝑥

𝜎
𝑛𝑙
𝜃

𝜎
𝑛𝑙
𝑧

𝜎
𝑛𝑙
𝜃𝑧

𝜎
𝑛𝑙
𝑥𝑧

𝜎
𝑛𝑙
𝑥𝜃

)
)
)
)
)
)

)

(𝑘)

=

[
[
[
[
[
[
[
[
[
[
[
[

[

𝐶11 𝐶12 𝐶13 0 0 𝐶16

𝐶12 𝐶22 𝐶23 0 0 𝐶26

𝐶13 𝐶23 𝐶33 0 0 𝐶36

0 0 0 𝐶44 𝐶45 0

0 0 0 𝐶45 𝐶55 0

𝐶16 𝐶26 𝐶36 0 0 𝐶66

]
]
]
]
]
]
]
]
]
]
]
]

]

(𝑘)

(
(
(
(
(

(

𝜀𝑥

𝜀𝜃

𝜀𝑧

𝛾𝜃𝑧

𝛾𝑥𝑧

𝛾𝑥𝜃

)
)
)
)
)

)

(𝑘)

,

(18)

where 𝐶
(𝑘)

𝑖𝑗 represent the off-axis stiffnesses. Multiplying the
relation (18) by Φ󸀠𝑘 and Φ𝑘 and integrating them yield

∫

ℎ/2

−ℎ/2

{{

{{

{

𝜎𝜃

𝜎𝜃𝑧

𝜎𝑥𝜃

}}

}}

}

(𝑘)

Φ𝑘𝑑𝑧 −𝜇∇
2
∫

ℎ/2

−ℎ/2

{{

{{

{

𝜎𝜃

𝜎𝜃𝑧

𝜎𝑥𝜃

}}

}}

}

(𝑘)

Φ𝑘𝑑𝑧

=
[
[
[

[

𝐶12 𝐶22 𝐶23 0 0 𝐶26

0 0 0 𝐶44 𝐶45 0

𝐶16 𝐶26 𝐶36 0 0 𝐶66

]
]
]

]

(𝑘)

⋅ ∫

ℎ/2

−ℎ/2

(
(
(
(
(

(

𝜀𝑥

𝜀𝜃

𝜀𝑧

𝛾𝜃𝑧

𝛾𝑥𝑧

𝛾𝑥𝜃

)
)
)
)
)

)

(𝑘)

Φ𝑘𝑑𝑧,

(19a)

∫

ℎ/2

−ℎ/2

{{

{{

{

𝜎𝑧

𝜎𝜃𝑧

𝜎𝑥𝑧

}}

}}

}

(𝑘)

Φ
󸀠

𝑘𝑑𝑧− 𝜇∇
2
∫

ℎ/2

−ℎ/2

{{

{{

{

𝜎𝑧

𝜎𝜃𝑧

𝜎𝑥𝑧

}}

}}

}

(𝑘)

Φ
󸀠

𝑘𝑑𝑧

=
[
[
[

[

𝐶13 𝐶23 𝐶33 0 0 𝐶36

0 0 0 𝐶44 𝐶45 0

0 0 0 𝐶44 𝐶45 0

]
]
]

]

(𝑘)

⋅ ∫

ℎ/2

−ℎ/2

(
(
(
(
(

(

𝜀𝑥

𝜀𝜃

𝜀𝑧

𝛾𝜃𝑧

𝛾𝑥𝑧

𝛾𝑥𝜃

)
)
)
)
)

)

(𝑘)

Φ
󸀠

𝑘𝑑𝑧.

(19b)

By considering (16a) and (16b) and strain displacement
relations (Equation (9)), the stress resultants are given as

(1−𝜇∇
2
) (𝑁
𝑘

𝑧 ,𝑀
𝑘

𝜃 ,𝑀
𝑘

𝑥𝜃)

=

(𝐵
𝑗𝑘

36, 𝐷
𝑘𝑗

26, 𝐷
𝑘𝑗

66)𝑈
󸀠
𝑗

𝑅
+

(𝐵
𝑗𝑘

23, 𝐷
𝑘𝑗

22, 𝐷
𝑘𝑗

26)𝑉
󸀠
𝑗

𝑅

+ (𝐴
𝑘𝑗

33, 𝐵
𝑘𝑗

23, 𝐵
𝑘𝑗

36)𝑊𝑗 +
(𝐵
𝑗𝑘

23, 𝐷
𝑘𝑗

22, 𝐷
𝑘𝑗

26)𝑊𝑗

𝑅

− (𝐴
𝑘

36, 𝐵
𝑘

26, 𝐵
𝑘

66) 𝑅𝐶3 − (𝐵
𝑘

36, 𝐷
𝑘

26, 𝐷
𝑘

66)𝐶3

+ (𝐴
𝑘

13, 𝐵
𝑘

12, 𝐵
𝑘

16) 𝑅𝐶5 cos 𝜃

+ (𝐵
𝑘

13, 𝐷
𝑘

12, 𝐷
𝑘

16)𝐶5 cos 𝜃

− (𝐴
𝑘

13, 𝐵
𝑘

12, 𝐵
𝑘

16) 𝐶6,

(1−𝜇∇
2
) (𝑄
𝑘

𝑥, 𝑄
𝑘

𝜃, 𝑅
𝑘

𝜃)

= (𝐴
𝑘𝑗

55, 𝐴
𝑘𝑗

45, 𝐵
𝑘𝑗

45)𝑈𝑗 + (𝐴
𝑘𝑗

45, 𝐴
𝑘𝑗

44, 𝐵
𝑘𝑗

44)𝑉𝑗

−

(𝐵
𝑗𝑘

45, 𝐵
𝑗𝑘

44, 𝐷
𝑘𝑗

44)𝑉𝑗

𝑅
+

(𝐵
𝑗𝑘

45, 𝐵
𝑗𝑘

44, 𝐷
𝑘𝑗

44)𝑊
󸀠
𝑗

𝑅
,

(20)

where the wall rigidities in (20) are defined as

(𝐴
𝑘𝑗

𝑝𝑞, 𝐵
𝑘𝑗

𝑝𝑞, 𝐷
𝑘𝑗

𝑝𝑞) =

𝑁

∑

𝑖=1
∫

𝑧𝑖+1

𝑧𝑖

𝐶
(𝑖)

𝑝𝑞 (𝜙
󸀠

𝑘𝜙
󸀠

𝑗, 𝜙𝑘𝜙
󸀠

𝑗, 𝜙𝑘𝜙𝑗) 𝑑𝑧,

(𝐴
𝑘

𝑝𝑞, 𝐵
𝑘

𝑝𝑞, 𝐵
𝑘

𝑝𝑞, 𝐷
𝑘

𝑝𝑞)

=

𝑁

∑

𝑖=1
∫

𝑧𝑖+1

𝑧𝑖

𝐶
(𝑖)

𝑝𝑞 (𝜙
󸀠

𝑘, 𝜙𝑘, 𝜙
󸀠

𝑘𝑧, 𝜙𝑘𝑧) 𝑑𝑧,

(𝑘, 𝑗 = 1, 2, . . . , 𝑁 + 1) .

(21)
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The nonlocal displacement equilibrium equations within
LWT are obtained by substituting (20) into (13a), (13b), and
(13c):

𝛿𝑈𝑘:
𝐷
𝑘𝑗

66
𝑅2 (1 − (𝜆2/𝑧2) 𝜇)

𝑈
󸀠󸀠

𝑗 −
𝐴
𝑘𝑗

55
(1 − (𝜆2/𝑧2) 𝜇)

𝑈𝑗

+
𝐷
𝑘𝑗

26
𝑅2 (1 − (𝜆2/𝑧2) 𝜇)

𝑉
󸀠󸀠

𝑗 −
𝐴
𝑘𝑗

45 − 𝐵
𝑗𝑘

45/𝑅

(1 − (𝜆2/𝑧2) 𝜇)
𝑉𝑗

+

(𝐷
𝑘𝑗

26/𝑅
2
+ (𝐵
𝑘𝑗

36 − 𝐵
𝑗𝑘

45) /𝑅)

(1 − (𝜆2/𝑧2) 𝜇)
𝑊
󸀠

𝑗

=
𝐵
𝑘
16 + 𝐷

𝑘
16/𝑅

(1 + 𝜇/𝑧2)
𝐶5 sin 𝜃

+
𝑧𝑘

𝑅𝜇0.5
(𝑒
−(𝑧𝑘/𝜇

0.5
)𝜃
− 𝑒
(𝑧𝑘/𝜇

0.5
)𝜃
) ,

(22a)

𝛿𝑉𝑘:
𝐷
𝑘𝑗

26
𝑅2 (1 − (𝜆2/𝑧2) 𝜇)

𝑈
󸀠󸀠

𝑗 −

(𝐴
𝑘𝑗

45 − 𝐵
𝑘𝑗

45/𝑅)

(1 − (𝜆2/𝑧2) 𝜇)
𝑈𝑗

+
𝐷
𝑘𝑗

22
𝑅2 (1 − (𝜆2/𝑧2) 𝜇)

𝑉
󸀠󸀠

𝑗

−

(𝐴
𝑘𝑗

44 − (𝐵
𝑘𝑗

44 + 𝐵
𝑗𝑘

44) /𝑅 + 𝐷
𝑘𝑗

44/𝑅
2
)

(1 − (𝜆2/𝑧2) 𝜇)
𝑉𝑗

+

((𝐵
𝑘𝑗

23 − 𝐵
𝑗𝑘

44) /𝑅 + (𝐷
𝑘𝑗

44 + 𝐷
𝑘𝑗

22) /𝑅
2
)

(1 − (𝜆2/𝑧2) 𝜇)
𝑊
󸀠

𝑗

=
𝐵
𝑘
12 + 𝐷

𝑘
12/𝑅

(1 + 𝜇/𝑧2)
𝐶5 sin 𝜃,

(22b)

𝛿𝑊𝑘:
((𝐵
𝑘𝑗

45 − 𝐵
𝑗𝑘

36) /𝑅 − 𝐷
𝑘𝑗

26/𝑅
2
)

(1 − (𝜆2/𝑧2) 𝜇)
𝑈
󸀠

𝑗

+

((𝐵
𝑘𝑗

44 − 𝐵
𝑗𝑘

23) /𝑅 − (𝐷
𝑘𝑗

44 + 𝐷
𝑘𝑗

22) /𝑅
2
)

(1 − (𝜆2/𝑧2) 𝜇)
𝑉
󸀠

𝑗

+
𝐷
𝑘𝑗

44
𝑅2 (1 − (𝜆2/𝑧2) 𝜇)

𝑊
󸀠󸀠

𝑗

+

(𝐷
𝑘𝑗

22/𝑅
2
+ (𝐵
𝑗𝑘

23 + 𝐵
𝑘𝑗

23) /𝑅 + 𝐴
𝑘𝑗

33)

(1 − (𝜆2/𝑧2) 𝜇)
𝑊𝑗

= −(𝐵
𝑘

36 +𝐵
𝑘

26 +𝑅𝐴
𝑘

36 +
𝐷
𝑘
26
𝑅

)𝐶3

+(𝐴
𝑘

13 +
𝐵
𝑘
12
𝑅

)𝐶6

+

(𝐵
𝑘

13 + 𝐵
𝑘
12 + 𝑅𝐴

𝑘
13 + 𝐷

𝑘
12/𝑅)

(1 + 𝜇/𝑧2)
𝐶5 cos 𝜃

+
1
𝑅
(𝑒
−(𝑧𝑘/𝜇

0.5
)𝜃
+ 𝑒
(𝑧𝑘/𝜇

0.5
)𝜃
)

𝑘 = 1, 2, . . . , 𝑁 + 1.
(22c)

Also, the global equilibrium equations of the nanotube are
expressed in terms of displacement functions by substituting
(9) into (19a), (19b) and the subsequent results into (14a),
(14b), and (14c).

4. Analytical Solution for Nanotube Structure

The system in (22a), (22b), and (22c) shows 3(𝑁+1) coupled
ordinary differential equations with constant coefficients
which may be displayed in a matrix form as

[𝑀] {𝜂
󸀠󸀠
} + [𝐾] {𝜂} = {𝐹1} {𝐶} + {𝐹2} , (23)

where

{𝜂} = {{𝑈}
𝑇
, {𝑉}
𝑇
, {𝑊}

𝑇
}

𝑇

,

{𝑈} = {𝑈1, 𝑈2, . . . , 𝑈𝑁+1}
𝑇
,

{𝐶} = {𝐶3, 𝐶5, 𝐶6}
𝑇
,

{𝑉} = {𝑉1, 𝑉2, . . . , 𝑉𝑁+1}
𝑇
,

{𝑊} = {𝑊1,𝑊2, . . . ,𝑊𝑁+1}
𝑇
,

(24a)

𝑊𝑗 = ∫

𝜃

𝑊𝑗𝑑𝜃.
(24b)

The coefficient matrices [𝑀], [𝐾], [𝐹1], and [𝐹2] in (23) are
defined in the Appendix. It can readily be confirmed that the
general solution of (23) may be presented as

{𝜂} = [𝜓] [sinh (𝜆𝜃)] {𝑘} + [𝐾]
−1
{𝐹1} {𝐶}

+ [𝐾]
−1
{𝐹2}

(25)

and [sinh(𝜆𝜃)] is a 3(𝑁+ 1) × 3(𝑁+ 1) diagonal matrix. That
is,

[sinh (𝜆𝜃)] = diag (sinh (𝜆1𝜃) , sinh (𝜆2𝜃) , . . . ,

sinh (𝜆3(𝑁+1)𝜃)) .
(26)

Also, [𝜓] and (𝜆21 , 𝜆
2
2 , . . . , 𝜆

2
3(𝑁+1)) are themodel matrix and

eigenvalues of (−[𝑀]
−1
[𝐾]), respectively. Matrix {𝑘} is an

unknown vector representing 3(𝑁+1) integration constants.
The constants 𝐶𝑗 (𝑗 = 3, 5, 6) must be calculated within
LWT analysis. Therefore, the boundary conditions in (15)
are first imposed to find the vector {𝑘} in terms of the
unknown parameters 𝐶𝑗 (𝑗 = 3, 5, 6). These constants are
then calculated in terms of the specified axial force 𝐹0 by
satisfaction of the global equilibrium conditions in (14a),
(14b), and (14c).
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Table 1: Mechanical properties of SWCNT, DWCNT, andMWCNT
[26–28].

Nanotubes Mechanical properties
𝐸 (TPa) V

SWCNT 1.80 0.19
DWCNT 1.33 0.19
MWCNT 0.95 0.19

Table 2: Comparison of nondimensional displacement component
in the longitudinal direction (𝑢𝑥).

𝐿/ℎ 𝜇 SWCNT DWCNT MWCNT (×101)

100

0 1.082 1.276 2.170
1.0 2.014 2.376 4.040
2.0 2.052 2.421 4.116
3.0 2.201 2.597 4.415
4.0 2.657 3.135 5.329
5.0 3.021 3.564 6.060

200

0 1.136 1.340 2.279
1.0 2.114 2.495 4.242
2.0 2.154 2.542 4.322
3.0 2.311 2.727 4.635
4.0 2.789 3.292 5.596
5.0 3.172 3.743 6.363

500

0 1.150 1.358 2.308
1.0 2.142 2.527 4.297
2.0 2.182 2.575 4.378
3.0 2.341 2.762 4.696
4.0 2.826 3.334 5.669
5.0 3.213 3.791 6.445

5. Results and Discussion

The numerical results are discussed for single-walled car-
bon nanotube (SWCNT), double-walled carbon nanotube
(DWCNT), and multiwalled carbon nanotube (MWCNT)
under extension. The mechanical properties of SWCNT,
DWCNT, and MWCNT are given in Table 1 [26–28]. Fur-
thermore, the displacement components are normalized as
𝑢𝑖 = 𝑢𝑖/𝑢0, where 𝑢0 = 𝐿

∗
𝜎0/𝐸 and 𝜎0 = (𝐹0)/(𝜋/4

∗
(𝑂𝐷
2
−

𝐼𝐷
2
). An innermost radius of 8.5 nm is assumed for

SWCNT, DWCNT, and MWCNT while assuming thickness
of SWCNT (ℎeff ) to be 0.34 nm [29]. Also, 𝐿 is the length of
nanotubes. A 10-layer MWCNT is considered here in which
𝑅/(𝑁
∗
ℎeff ) = 2. 𝐿/ℎ is defined as an aspect ratio.

The nanotube lengths, thickness, and nonlocal parame-
ters play significant roles on determining the nondimensional
displacement components. These parameters are studied
numerically.

The numerical results for SWCNT, DWCNT, and
MWCNT under axial force (𝐹0) at the point in which
𝜃 = 270

∘ are presented in Tables 2, 3, and 4. Table 2 shows the
effects of length, thickness, and nonlocal parameter (𝜇) on the
nondimensional longitudinal displacement component (𝑢𝑥).
It is found from Table 2 that the longitudinal displacement

Table 3: Comparison of nondimensional displacement component
in the circumferential direction (𝑢𝜃).

𝐿/ℎ 𝜇 SWCNT (×10−2) DWCNT (×10−2) MWCNT (×10−1)

100

0 1.110 1.309 2.226
1.0 2.131 2.514 4.274
2.0 2.265 2.672 4.543
3.0 2.579 3.043 5.173
4.0 3.001 3.540 6.018
5.0 3.260 3.846 6.539

200

0 1.165 1.375 2.337
1.0 2.237 2.640 4.488
2.0 2.378 2.806 4.770
3.0 2.707 3.195 5.432
4.0 3.150 3.717 6.318
5.0 3.423 4.039 6.866

500

0 1.180 1.393 2.368
1.0 2.266 2.674 4.546
2.0 2.409 2.842 4.832
3.0 2.743 3.236 5.502
4.0 3.190 3.765 6.401
5.0 3.467 4.091 6.955

Table 4: Comparison of nondimensional displacement component
in the radial direction (𝑢𝑧).

𝐿/ℎ 𝜇 SWCNT (×10−4) DWCNT (×10−4) MWCNT (×10−3)

100

0 1.354 1.597 2.716
1.0 1.887 2.226 3.785
2.0 2.265 2.672 4.543
3.0 2.402 2.834 4.818
4.0 3.012 3.554 6.042
5.0 3.223 3.803 6.465

200

0 1.421 1.677 2.851
1.0 1.981 2.337 3.974
2.0 2.378 2.806 4.770
3.0 2.522 2.976 5.059
4.0 3.162 3.731 6.344
5.0 3.384 3.993 6.788

500

0 1.440 1.699 2.889
1.0 2.007 2.368 4.026
2.0 2.409 2.842 4.832
3.0 2.554 3.014 5.125
4.0 3.203 3.780 6.426
5.0 3.428 4.045 6.876

component (𝑢𝑥) increases with increasing the thickness while
CNT length is kept constant. For SWCNT, the longitudinal
displacement component (𝑢𝑥) increases as the length of
SWCNT increases. Observing Table 2, the longitudinal dis-
placement component increases while the length and thick-
ness of CNT are kept constant.

The effects of length, thickness, and nonlocal parameter
(𝜇) on nondimensional circumferential displacement com-
ponents (𝑢𝜃) are studied in Table 3. It is observed from
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Table 3 that the circumferential displacement component
(𝑢𝜃) increaseswith increasing the thicknesswhileCNT length
is kept constant. The circumferential displacement compo-
nent (𝑢𝜃) increases with increasing the length. Observing
Table 3, the circumferential displacement component (𝑢𝜃)
increases as the nonlocal parameter (𝜇) increases where
length and thickness of CNT are fixed.

Table 4 reveals investigation for the effects of length,
thickness, and nonlocal parameter (𝜇) on nondimensional
radial displacement components (𝑢𝑧). Table 4 shows the
radial displacement component (𝑢𝑧) increases as the thick-
ness of nanotube increases. For the case of constant thickness,
the radial displacement component (𝑢𝑧) increases as CNT
length increases. It is clear from Table 4 that the increase
of nonlocal parameter (𝜇) causes increase of the radial dis-
placement component (𝑢𝑧).

6. Conclusions

We have developed a new nonlocal method for nanotube
structures subjected to tension. Equations of motion using

layer-wise theory were derived based on Eringen’s differential
constitutive equations of nonlocal elasticity. Variational state-
ments of the theory were also presented to facilitate direct
development of the nonlocal displacement models of layer-
wise theory. The equations of motion were then analytically
solved for nanotubes under axial force to bring out the
effect of nonlocal parameter. All displacement components
increase with the increase in the nonlocal parameters 𝜇.
Remark that the displacement components increase with
increasing the length and thickness of CNT. Also, it is
observed that the displacement components for MWCNT
and DWCNT are greater than those for SWCNT. The values
for displacement component in the longitudinal direction
(𝑢𝑥) are greater than those for the displacement components
in the circumferential (𝑢𝜃) and radial (𝑢𝑧) directions for
SWCNT, DWCNT, and MWCNT.

Appendix

The coefficient matrices [𝑀], [𝐾], [𝐹1], and [𝐹2] in (23) are
presented as

[𝑀] =
1

1 − (𝜆2/𝑧2) 𝜇

[
[
[
[
[
[
[
[

[

1
𝑅2 [𝐷66]

1
𝑅2 [𝐷26]

1
𝑅
([𝐵36] − [𝐵45]

𝑇
) +

1
𝑅2 [𝐷26]

1
𝑅2 [𝐷26]

1
𝑅2 [𝐷22]

1
𝑅
([𝐵23] − [𝐵44]

𝑇
) +

1
𝑅2 ([𝐷22] + [𝐷44])

[0] [0] 1
𝑅2 [𝐷44]

]
]
]
]
]
]
]
]

]

,

[𝐾] =
−1

1 − (𝜆2/𝑧2) 𝜇

⋅

[
[
[
[
[
[
[
[

[

− [𝐴55] − [𝐴45] +
1
𝑅
[𝐵45]
𝑇

[0]

− [𝐴45] +
1
𝑅
[𝐵45] − [𝐴44] +

1
𝑅
([𝐵44] + [𝐵44]

𝑇
) −

1
𝑅2 [𝐷22] [0]

1
𝑅
([𝐵45] − [𝐵36]

𝑇
) −

1
𝑅2 [𝐷26]

1
𝑅
([𝐵44] − [𝐵23]

𝑇
) −

1
𝑅2 ([𝐷22] + [𝐷44]) − [𝐴33] −

1
𝑅
([𝐵23] + [𝐵23]

𝑇
) −

1
𝑅2 [𝐷22]

]
]
]
]
]
]
]
]

]

,

{𝐹1}

=

{{{{{{{{{

{{{{{{{{{

{

{0} sin 𝜃
1 + 𝜇/𝑧2

({𝐵16} +
1
𝑅
{𝐷16}) {0}

{0} sin 𝜃
1 + 𝜇/𝑧2

({𝐵12} +
1
𝑅
{𝐷12}) {0}

− ({𝐵36} + {𝐵26} + 𝑅 {𝐴36} +
1
𝑅
{𝐷26}) 𝜃

sin 𝜃
1 + 𝜇/𝑧2

({𝐵13} + {𝐵12} + 𝑅 {𝐴13} +
1
𝑅
{𝐷12}) ({𝐴13} +

1
𝑅
{𝐵12}) 𝜃

}}}}}}}}}

}}}}}}}}}

}

,

{𝐹2} =

{{{{{{

{{{{{{

{

𝑧𝑘

𝑅𝜇0.5
(𝑒
−(𝑧𝑘/𝜇

0.5
)𝜃
− 𝑒
(𝑧𝑘/𝜇

0.5
)𝜃
)

{0}

𝜇
0.5

𝑅𝑧𝑘

(𝑒
(𝑧𝑘/𝜇

0.5
)𝜃
− 𝑒
−(𝑧𝑘/𝜇

0.5
)𝜃
)

}}}}}}

}}}}}}

}

.

(A.1)
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