Supporting Information

All-Polymer Solar Cells Based on Fully Conjugated Donor-Acceptor Block Copolymers with Poly(naphthalene bisimide) Acceptor Blocks: Device Performance and Thin Film Morphology

Kazuhiro Nakabayashi, and Hideharu Mori

Department of Polymer Science and Engineering, Graduate School of Science and Engineering,

Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan

Characterization.

The UV-vis spectra were recorded on a JASCO V-630BIO UV-vis spectrophotometer. Cyclic voltammetry experiments for the polymer thin films were performed on a BAS electrochemical analyzer (model 660C). A three-electrode cell was used with platinum electrodes as both the counter and working electrodes. Silver/silver ion (Ag in 0.1 M AgNO₃ solution) was used as the reference electrode. Ferrocene/Ferrocenium (Fc/Fc⁺) was used as an internal standard. The potential values obtained in reference to Ag/Ag⁺ were converted to the values relative to the saturated calomel electrode (SCE). Tapping mode AFM observation was performed with an Agilent AFM 5500, using micro-fabricated cantilevers with a force constant of approximately 34 N/m. The samples for AFM measurements were prepared by the spin-coating of P3HT:P2 solutions (10 mg/mL in dichlorobenzene) onto silicon wafer and dried under ambient condition. GIWAXS experiments were conducted at the Spring-8 on beamline BL19B2. The sample was irradiated at a fixed incident angle on the order of 0.12° through a Hubber diffractometer with an X-ray energy of 12.39 keV ($\lambda = 1$ Å), and the GIXD patterns were recorded with a 2-D image detector (Pilatus 300K). The samples for GIWAXS measurements were prepared by the drop-casting of polymer solutions onto silicon wafer.

All-polymer solar cell fabrication with P3HT:PNBI system.

The typical procedure of ITO/PEDOT:PSS/P3HT:PNBI/Ca/Al architecture is as follows: Commercially available prepatterned 15 Ω/\Box sheet resistance ITO substrates were cleaned and plasma-etched. Then PEDOT:PSS aqueous solution was spin-coated at 4000 rpm for 40 s, and subsequently annealed under flowing nitrogen at 120 °C for 10 min. Substrates were allowed to cool under nitrogen atmosphere and then transferred to a glovebox. P3HT:PNBI blend dichlorobenzene solution was spin-coated at 700 rpm for 90 s, and the active layer was annealed at 200 °C for 15 min. The blend solution that 5 mg of each polymer dissolved in 1 mL of dichlorobenzene (1:1 by weight, conc. = 10 mg/mL) was prepared in a glovebox. Then the top electrode consisted of Ca interlayer (20 nm) and Al electrode (80 nm) was vacuum-deposited. The *J-V* characteristics of the devices were measured by using a direct-current voltage and a current source/monitor (Bunko-Keiki, BSO-X500L) in nitrogen atmosphere under AM1.5G simulated solar light at 100 mWcm⁻². The light intensity was corrected with a calibrated silicon photodiodo reference cell (Bunko-Keiki, BS-520).

Figure S1. (A) Structural information of PNBI and (B) *J-V* characteristics of P3HT:PNBI system under AM1.5G (100 mW/cm²) illumination.

Figure S2. UV-vis absorption spectra of P3HT, PNBI, P1, and P2 thin films.

	Optical properties		Electrochemical properties			
: :	λ_{\max} (nm)	$E_{\rm g}^{\rm opt}({\rm eV})^{\rm a}$	$E_{\rm red}^{\rm onset}$ (V) ^b	$E_{\rm ox}^{\rm onset}$ (V) ^b	HOMO (eV) ^c	LUMO (eV) ^d
PNBI	383, 561	1.65	-0.1	1		-4.30
P1	379, 557, 603	1.65	-0.13	1.17	-5.57	-4.27
P2	391, 521	1.46	-0.18	1.20	-5.60	-4.22

Table S1. Optical and electrochemical properties of PNBI.

^aCalculated from $E_{g^{opt}} = 1240/\lambda_{edge}$ (eV). ^bvs SCE. ^cHOMO was calculated from HOMO = $-(E_{ox}^{onset} + 4.4)$ (eV). ^dLUMO was calculated form LUMO = $-(E_{red}^{onset} + 4.4)$ (eV).

Figure S3. GIWAXS profiles of thermal-annealed P3HT homopolymer film.