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The photocatalytic activities of polyoriented and preferential Pt(111) nanoparticles supported on TiO
2
(Pt(poly)/TiO

2
and

Pt(111)/TiO
2
) were investigated by the photocatalytic hydrogen generation from water under visible-light irradiation. The

photocatalytic hydrogen production rate of Pt(111)/TiO
2
was 1.6 times higher than that of Pt(poly)/TiO

2
. The corresponding

apparent activation energy onPt(111)/TiO
2
was about 2.39 KJ/mol, while on Pt(poly)/TiO

2
, it was about 4.83 KJ/mol.Thedifference

in the apparent activation energies was probably due to the diversity in the number of surface atoms at corners and edges between
the Pt(poly) and Pt(111) nanoparticles.The photocurrent of Pt(111)/TiO

2
was also bigger than that of Pt(poly)/TiO

2
, implying that

the surface structure of Pt(111) nanoparticles can improve the transfer efficiency of photo-induced electrons from the conduction
band of TiO

2
to Pt nanoparticles. As a result, the surface structure of Pt nanoparticles played an important role in the reactivity and

kinetics performance of hydrogen evolution. Therefore, the photocatalytic properties of Pt/TiO
2
strongly depended on the surface

structure of Pt nanoparticles.

1. Introduction

TiO
2
is the most widely used photocatalyst. Up to now, the

energy conversion efficiency from solar to hydrogen by TiO
2

photocatalytic water splitting is still low, mainly resulting
from the following reasons: (1) the quick recombination of
photo-generated electron/hole pairs; (2) the fast backward
reaction, that is, the recombination reaction of hydrogen
and oxygen into water; (3) the wide band-gap only excited
by ultraviolet irradiation [1]. In order to resolve the above
problems, numerous efforts have been made to promote the
photocatalytic activity and enhance the visible-light response,
such as addition of electron donors (hole scavengers), addi-
tion of carbonate salts, noblemetal loading,metal ion doping,
anion doping, and dye sensitization.

Loading of noble metal particles on the surface of TiO
2

can inhibit the photo-induced charge recombination [2–19].

It was found that the loading concentration, nanoparticle
size, and introduction order of Pt have great influence on
the hydrogen production rate [1, 20–23]. However, there were
still no reports about the effect of the surface structure of
loaded platinum nanoparticles on photocatalytic activity of
TiO
2
. Solla-Gullón et al. demonstrated that the formic acid

electrooxidation activity on preferential Pt(111) electrodes
was higher than that on Pt(poly) electrodes, because the
Pt(poly) electrode has only a small amount of (111) domains
[24]. Marković et al. found that the activity for oxygen reduc-
tion in 0.1M HClO

4
decreased in the sequence Pt(110) >

Pt(111) > Pt(100). Since O
2
reductionmainly involved a four-

electron reduction to water as the main product, the kinetics
were found to be first order with respect to O

2
on all three

low-index surfaces [25, 26]. Employing the same method,
ElKadiri et al. found that O

2
reduction in 1M HC1O

4
was

essentially insensitive to the Pt surface structure but was
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structure-sensitive to anions in solutions. The structure sen-
sitivity arouse from structure-sensitive adsorption of anions
which impeded the reaction. The activity of the platinum
single crystals in solutions containing strongly adsorbing
anions increased in the order Pt(111) < Pt(100) < Pt(110)
[27]. Marković et al. also found that, in oxygen reduction
reaction, the reactivity on Pt(100) was higher than that on
Pt(111) owing to the different adsorption rate of sulfates on
these facets [25]. Nevertheless, it was desirable to exploit the
influence of Pt nanoparticles with different surface structure
on photocatalytic activity of TiO

2
so as to improve hydrogen

evolution efficiency and significantly reduce consumption of
the Pt loaded on TiO

2
while maintaining the high photocat-

alytic activity.
In the present work, the study of water photolysis for

hydrogen production on Pt(111)/TiO
2
and Pt(poly)/TiO

2

has been carried out. Pt/TiO
2
photocatalysts with differ-

ent surface structure of Pt nanoparticles were prepared by
microemulsion and colloidal method. We found that the
different surface structure of Pt nanoparticles had significant
influence on the photocatalytic activity of TiO

2
in suspension

solution. The particle size, shape, and chemical state of Pt
nanoparticles as well as their effect on photocatalytic activity
for hydrogen evolution from water were studied in detail.

2. Experimental Sections

2.1. Preparation. All the reagents were of analytical grade and
were used without further purification.

2.1.1. Pt(poly)/TiO2 Photocatalyst Preparation. (Poly) Pt/TiO2
photocatalyst was prepared by the water-in-oil microemu-
lsion method (water/polyethylene glycol dodecyl ether
(Brijs30)/n-heptane).NaBH

4
was used as reducing agent [28–

31]. Subsequently, the Pt nanoparticles solution was loaded
on TiO

2
. The precipitate was washed several times with

acetone and deionized water in order to eliminate surfactant
molecules, and then the product was annealed at temperature
of 423K for 2 h in muffle furnace. The resulting sample
contained about 0.5% Pt by weight.

2.1.2. Pt(111)/TiO2 Photocatalyst Preparation. Pt(111)/TiO
2

photocatalyst was prepared by colloidal method. In brief, an
aqueous solution (30mL) of H

2
PtCl
6
(5mg/mL) containing

PVP (polymer/Pt = 1/10, mol/mol) was purged with Ar for
10min and the Pt ionswere reduced by bubblingH

2
for 3min.

In the second approach, a certain amount of TiO
2
was added

into Pt sol, keeping stirring for 24 h.Themixture was washed
3 times in deionized water and methanol, respectively, and
then the product was annealed at temperature of 423K for
2 h in muffle furnace. The resulting sample contained about
0.5% Pt by weight.

2.2. Photocatalytic Activity Test. Photocatalytic hydrogen
evolution experiments were performed in a 190mL quartz
flask with a flat window, the openings of which were sealed
with a silicone rubber septum for sampling at ambient
temperature and atmospheric pressure. A 300-WXenon lamp

equipped with a 420 nm cutoff filter was used as a light
source. The reactant mixtures containing 100mg of powder
photocatalyst, 35.7mg of Eosin Y, and 100mL of aqueous
triethanolamine (TEOA, 15 (v/v) %, pH = 7.00) solution
were placed in a quartz reaction flask and dispersed by
ultrasonication. The pH values of the reaction solution were
adjusted by addition of nitric acid or sodium hydroxide.
Before irradiation, the reaction mixture was purged with
argon gas for 40min to remove the dissolved oxygen. During
the photocatalytic process, agitation of the solution ensured
uniform irradiation of the catalyst suspension and a 0.5mL
gas sample in the top of reactor was collected intermittently
through the septum. The amount of hydrogen evolution was
measured with gas chromatography (Aglient 6820, TCD, 13x
column, Ar carrier).

2.3. Working Electrode Preparation and Photoelectrochemi-
cal Measurement. Photocurrent responses of samples were
measured using an electrochemical analyzer (CHI660A) in
a homemade standard three-compartment cell. Platinum
foil was used as counter electrode and a saturated calomel
electrode (SCE) as the reference electrode. The working
electrodes were prepared by drop-coating a certain volume
of sample suspensions onto the conductive surface of pre-
cleaned indium tin oxide glass (ITO glass) by microsyringe
and dried under an infrared heat lamp. The geometrical
surface area of working electrode exposed to the electrolyte
was a circular film of 1.6 cm2. Aqueous 15 vol% TEOA (pH =
7.00) solution was used as supporting electrolyte. A 300W
Xenon lamp with optical cutoff filter (𝜆 ≥ 420 nm) was used
for excitation.

2.4. Characterization. Transmission electron microscopy
(TEM) images were taken with a Tecnai-G2-F30 field emis-
sion transmission electron microscope operating at accel-
erating voltage of 300 kV. Photoluminescence spectra were
recorded by a FluoroMax-4 spectrofluorometer spectrometer.
The fluorescence decay times were measured using the
Horiba Jobin Yvon DataStation HUB operating in time-
correlated single photon counting (TCSPC) mode with the
time resolution of 200 ps. Nano-LED diode emitting pulses
at 460 nm with 1MHz repetition rate and pulse duration of
1.3 nswas used as an excitation source. Light-scattering Ludox
solution was used to obtain the instrument response function
(prompt). The time ranges are 0.055 ns/channel, in 4096
effective channels. Horiba Jobin Yvon DAS6 fluorescence
decay analysis software was used to fit the model functions
(one- and two-exponential decays) to the experimental data.

3. Results and Discussion

3.1. Characterization. Figure 1 shows representative TEM
images and size distribution of Pt(poly)/TiO

2
and Pt(111)/

TiO
2
samples. Images of (a-1)–(a-4) and (b-1)–(b-4) cor-

respond to Pt(poly)/TiO
2
and Pt(111)/TiO

2
, respectively.

The Pt nanoparticles prepared in microemulsion showed
a quasispherical shape (Figure 1(a-1)) with particle size of
3.0 ± 1 nm and the size distribution was relatively uniform.



Journal of Nanomaterials 3

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Size (nm)

1.5 2.0 2.5 3.0 3.5 4.0

Size (nm)

(a-4)

(b-4)

20nm

20nm

5nm

5nm

0.224 nm

0.225 nm

0.223 nm

0.224 nm

0.225 nm

0.225 nm

0.223 nm

0.224 nm

0.222 nm 0.225 nm

0.224 nm

0.195nm
0.195nm

10nm

0.196nm

0.228 nm

10nm

(a-1) (a-2) (a-3)

(b-1) (b-2) (b-3)

0

5

10

15

20

25

30

35

40

45

Fr
eq

ue
nc

y 
(%

)

0

5

10

15

20

25

30

35

40

Fr
eq

ue
nc

y 
(%

)

Figure 1: TEM images ((a-1)–(a-3) and (b-1)–(b-3)) and Pt nanoparticles’ size distribution ((a-4) and (b-4)) of Pt(poly)/TiO
2
and

Pt(111)/TiO
2
samples, respectively.
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Figure 2: Pt4f spectrum and Ti2p spectrum from Pt(poly)/TiO
2
and Pt(111)/TiO

2
.

As shown in Figure 1(a-2), there were two lattice spacings
of 0.228 nm and 0.1955 nm, which were assigned to Pt(111)
and Pt(100) facets, respectively. It indicated that the Pt
nanoparticles were non-specifically structured. On the other
hand, the TEM and HRTEM images of Pt(111) nanoparticles
are shown in Figure 1(b). According to the HRTEM analysis
(Figure 1(b-2)), the lattice spacing between 0.222 nm and
0.225 nm all corresponds to (111) facets of Pt. Since the most
of Pt nanoparticles (Figure 1(b-2)) were observed with (111)
facets, they formed a preferential (111) surface structure. In
this sample, the size of Pt particles varied in the range of

2.5 ± 0.5 nm. Therefore, the particle size distribution in this
case was also near-uniform. In both samples (Figures 1(a-3)
and 1(b-3)), the sizes of Pt(111) and Pt(poly) nanoparticles
were comparable and these nanoparticles were evenly dis-
persed over TiO

2
surface.The two kinds of platinum particles

on TiO
2
retained their initial structures after calcination at

423K [32].
The XPS results of Pt and Ti elements are shown in

Figure 2. There was obviously no shift between the centers
of Pt peaks of two samples, and the Ti XPS peaks for both
samples were also identical, indicating that, for both samples,
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Figure 3: Arrhenius plots of the natural logarithm of rate constant
versus 1/𝑇 for Pt(poly)/TiO

2
and Pt(111)/TiO

2
.

the chemical state of Pt andTi species onTiO
2
surface and the

interaction betweenPt andTiO
2
were the same.Therefore, for

both samples, the effect of TiO
2
was the same.

3.2. Comparison of Photocatalytic Activities of Pt/TiO2 Pho-
tocatalysts. The photocatalytic activities of Pt/TiO

2
photo-

catalysts were evaluated under visible-light irradiation (𝜆 ≥
420 nm) using TEOA and EY as sacrificial donor and photo-
sensitizer, respectively. Control experiments indicated that no
appreciable hydrogen evolution was detected in the absence
of either irradiation or EY. The hydrogen evolution rate of
Pt(111)/TiO

2
and Pt(poly)/TiO

2
was 171.4 and 107.1mL/g⋅h,

respectively; that is, the photocatalytic hydrogen production
rate of Pt(111)/TiO

2
was 1.6 times higher than that of

Pt(poly)/TiO
2
. It indicated that compared with Pt(poly)

nanoparticles, Pt(111) nanoparticles have a more positive
effect on photocatalytic activity enhancement.

The photocatalytic water splitting reaction by semicon-
ductor was a first-order reaction [33]. However, in our
reaction system, the concentration of reactants did not
change, so we considered it as a quasi-zero-order reac-
tion. The specific rate constant 𝑘 at different temperatures
was calculated from the average reaction rates. Figure 3
presents the Arrhenius plots of photocatalytic water splitting
reaction on Pt(poly)/TiO

2
and Pt(111)/TiO

2
. The apparent

activation energies on Pt(poly)/TiO
2
and Pt(111)/TiO

2
were

4.83 and 2.39KJ/mol, respectively, which were basically
consistent with the previous reports [34–40]. The reactions
were repeated twice, and the reproducibility was satisfac-
tory. The lower apparent activation energies obtained on
Pt(111)/TiO

2
may be attributed to the bigger number of

atoms at corner and edge sites [41–44]. With analogous
average size distributions, the number of atoms at corners
and edges of Pt(111) nanoparticles was about 9 times larger
than that of Pt(poly) nanoparticles [24, 44, 45]. On the other
hand, the apparent activation energy was often associated

320 340 360 380 400 420 440 460 480300
Wavelength (nm)

Pt(poly)/P25
Pt(111)/P25

In
te

ns
ity

 (1
0
3

a.u
.)

50

100

150

200

250

300

Figure 4: Photoluminescence spectra of Pt(poly)/TiO
2
andPt(111)/

TiO
2
.

with the adsorption-desorption properties [46], the diffusion
behavior of reactants and products [47], or the solid-state
properties of photocatalysts [48–50]. Hisatomi et al. believed
that the mobility of photo-excited carriers was one of the
influence factors on the apparent activation energy of water
splitting reaction [51]. To some extent, the lower apparent
activation energy corresponded to the faster transferring
rate and the smaller recombination efficiency of photo-
excited carriers. The hydrogen evolution reaction (H+ +
e− → H, 2H → H

2
) took place on Pt nanoparticles

surface, and thus the physical and chemical properties of Pt
nanoparticles surface were the main influential factors on
hydrogen evolution reaction.The results of HRTEM and XPS
analysis showed that, for Pt(poly)/TiO

2
and Pt(111)/TiO

2
,

the size, morphology, and chemical state of Pt nanoparticles
were all similar. So it was reasonable to conclude that the
different apparent activation energies originated from the
different surface structure between Pt(poly) and Pt(111)
nanoparticles.

To determine the electron-hole recombination character-
istics on the above photocatalysts, photoluminescence (PL)
studies were undertaken. PL emission is a useful technique
to determine the trapping and migration efficiency of charge
carriers, whichwas used to study the behavior of the electron-
hole pairs [52, 53]. It is well known that PL emission results
from the recombination of excited electrons and holes. The
lower the PL intensity, the smaller the recombination rate
[54]. Figure 4 presents the PL spectra of Pt(poly)/TiO

2
and

Pt(111)/TiO
2
. The figure showed that the PL intensity of

Pt(111)/TiO
2
sample was smaller than that of Pt(poly)/TiO

2
,

which was in accord with the change trend of hydrogen
production rate and PL decay curves (Figure 5). The PL
signal reflected the transition of electrons from the excited
state to the ground state. Generally, when semiconductor
materials receive energy from the outside generating photo-
excited electron-hole pairs, the electrons will transfer from
the ground state to the excited state, but the electrons are
unstable due to the high energy state and they return to
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the ground state, so fluorescent light is emitted. A higher
PL intensity represents a bigger recombination rate between
photo-generated electrons and holes. Pt(111)/TiO

2
sample

exhibited a weaker PL intensity indicating that the radia-
tive charge recombination on it was suppressed relatively
stronger. To give further evidence on the above statements,
the transient photocurrent responses of Pt(poly)/TiO

2
and

Pt(111)/TiO
2
samples were investigated for several on-off

cycles of intermittent irradiation (200 s). Figure 6 shows
𝑖-𝑡 curves for the aforementioned two samples. The pho-
tocurrent on Pt(111)/TiO

2
sample was larger than that on

Pt(poly)/TiO
2
, indicating that under the same conditions

the photo-excited electron transfer was more efficient on the
former. It was reasonable to conclude that the Pt(111) facet
significantly retarded the electrons recombinationwith holes,
resulting in an enhanced photocatalytic hydrogen evolution
activity. Therefore, the surface structure of Pt nanoparticles

had a strong influence on the electron transfer from the
conduction band of TiO

2
to Pt particles surface.

4. Conclusions

Pt(poly)/TiO
2
and Pt(111)/TiO

2
photocatalysts were pre-

pared by water-in-oil microemulsion and colloidal methods,
respectively. The particle sizes of Pt nanoparticles were sim-
ilar for Pt(poly)/TiO

2
and Pt(111)/TiO

2
. The photocatalytic

activity for hydrogen generation of Pt(111)/TiO
2
was about

1.6 times higher than that of Pt(poly)/TiO
2
. For Pt(111)/TiO

2
,

the apparent activation energy was 2.86KJ/mol while for
Pt(poly)/TiO

2
, it was 4.83 KJ/mol. Therefore, under the

same conditions, the water photocatalysis reaction on
Pt(111)/TiO

2
was more effective. The results of PL spectra

and PL decay implied that the rate of photo-generated
electrons transfer on Pt(111)/TiO

2
was bigger than that on

Pt(poly)/TiO
2
, which was in favor of impeding the recombi-

nation of electrons and holes. The significant lower apparent
activation energy and bigger photo-induced electron transfer
rate of Pt(111)/TiO

2
may be attributed to the bigger number

of corner and edge sites on Pt(111) nanoparticles compared
with that on Pt(poly) nanoparticles.
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