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The laminar convective heat transfer behavior of CuO nanoparticle dispersions in glycol with the average particle sizes (about
70 nm) was investigated experimentally in a flow loop with constant heat flux. To enhance heat exchange under high temperature
condition and get the more accurate data, we try to improve the traditional experimental apparatus which is used to test nanofluid
heat transfer characteristics. In the experiment five different nanoparticle concentrations (0.25%, 0.50%, 0.80%, 1.20%, and 1.50%)
were investigated in a flow loop with constant heat flux.The experimental results show that the heat transfer coefficient of nanofluid
becomes higher than that of pure fluid at the same Reynolds number and increased with the increasing of the mass fraction of
CuO nanoparticles. Results also indicate that at very low volume concentrations nanofluid has no major impact on heat transfer
parameters and the pressure of nanofluids increased by the mass fraction increase.

1. Introduction

With the development of industry, traditional heat transfer
fluids such as oil, water, and ethylene glycol are hardly sat-
isfying the requirement of modern industry, transportation,
nuclear, electronic engineering, and so forth.Therefore, it has
been proposed thatmillimeter- ormicrometer-sized particles
could be suspended in industrial heat transfer fluids to
employ. However, it has a lot of disadvantages in heat transfer
fluids containing suspended particles of micrometer and
millimeter size like clogging in small passages and erosions of
the components by abrasive reactions. As a new class of engi-
neered fluid, nanofluids were the first pioneered by Choi and
Eastman in 1995 [1]; it has been proposed that nanometer-
sized particles could be suspended in industrial heat transfer
fluids such as water, ethylene glycol, and oil to produce a
new class of engineered fluidswith high thermal conductivity.
Because of the excellent thermal conductivity, nanofluid
dispersions are important for a number of industrial sectors
including transportation, power generation, micromanufac-
turing, and miniature devices [2, 3].

Nanofluids as a new class of heat transfer fluids have
already been researched by many researchers in the past few

years. Pak and Cho [4] investigated turbulent heat transfer
characteristics of 𝛾-Al

2
O
3
/water and TiO

2
/water nanofluid in

a circular pipe in 1998. The results indicated that when the
volume fraction of nanoparticles was 3%, the heat transfer
coefficient of nanofluids comparedwith purewater is reduced
by 12%. Kole and Dey [5] investigated the automobile cooling
liquid of Al

2
O
3
nanofluids and got the curvilinear relation-

ship between viscosity/temperature and nanoparticle volume
fraction. Zyła and Cholewa [6, 7] did the research on the
unexpected behavior of viscosity of glycol-based MgAl

2
O
4

nanofluids and shown that nanofluids have been studied
very intensively because they may find many applications
in many fields including science, industry, and medicine.
Recently, many researchers [8–10] constructed an apparatus
to investigate on the pool boiling heat transfer convective heat
and friction factor of nanofluid. In addition, there are some
other researchers [11–14] that do lots of experiments to study
the heat transfer characteristics of nanofluid and all of them
get the conclusion that, comparing with base fluid, nano-
meter-sized particles which were suspended in the industrial
heat transfer fluids have bright advantages in heat transfer.
Although there are many researchers that have already focu-
sed on the study of nanofluids heat transfer characteristics in
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Figure 1: Schematic diagram of experimental apparatus.

copper tube, we had designed the experimental system; for
example, the copper tube was heated by electric resistance
wire but it could not heat uniformly and the data of exper-
iment is not accurate.

This paper aims to consider effects of nanofluid coolant
on heat transfer by improved setup and get the more accurate
data. So it is better to understand the heat transfer characteris-
tics of nanofluid comparedwith glycol fluid. Furthermore, the
results from calculation of several Nusselt correlations were
compared with the measured data. Because CuO nanofluids
not only have high thermal conductivity but also make good
compatibility with basic liquid, the cost is not too high. So
taking the factors into consideration, CuO nanofluids will be
selected.

Firstly, the theory of experiment and data parameter is
discussed in Section 2. Secondly Section 3 provides the detai-
led theory of conducted heat. Thirdly, in Section 4, the rela-
tionship between Reynolds number and heat transfer coef-
ficient (including pressure and flow) would be introduced.
Finally some concluding remarks are made in Section 5.

2. The Building of Experimental System

2.1. Schematic Diagram of Experimental Setup. As is shown in
Figure 1, the reservoir tank (about 5 liters) was made of poly-
methylmethacrylate and intended to hold the preparation
of nanofluid, while being equipped with the thermocouple
of the accuracy of 0.1∘C, and the pressure of intake/outtake
was measured by the pressure meter. A flow meter recorded
the nanofluids quantity of flow; the bypass line was used to
discharge liquid. The copper tube with an inner diameter of
25mm and an external diameter of 30mm and a length of
1000mm was used as the test section; the copper tube casing
was full of ethylene glycol. The tube surface was covered with
heat preservation material of aluminum silicate and a fiber
glass tape; the tube was fixed by flange plates on both ends
and gauze with asbestos was located in the middle, which has
the function of preserving heat.

Therewere two pyroelectric sensors (one has the accuracy
of 0.1∘C; another has the accuracy of 1∘C) in the test section;
they were used to measure the tube wall and fluid tempera-
ture. In order to control the fluid flow rate, a valve was used.
The first circulatory systemwasmade up of the reservoir tank
and the test section; the system could measure the heat trans-
fer coefficient of the nanofluid. Secondly circulatory system
was a heat exchanger and a cooling tank; the function was to
preserve constant temperature at the inlet of the test section.
The third circulatory system was a heating device and a test
section; the main function of that was to heat ethylene glycol
which was located in the middle of the sleeve and the copper
tube, to preserve a constant temperature of the tube wall.

2.2. The Experimental Step. In this section, the nanofluid
with 50∼60 nmCuO particles will be prepared different mass
fractions for the experiment, and there are four steps that will
be followed before analyzing the test data:

(1) Check out the air tightness of the test device.

(2) By making nanofluid with “two steps” andmeasuring
little nanoparticles and dispersant, they were added
into the glycol fluid andmixed in 120minutes,making
use of ultrasonic shaking in 150minutes in order to get
nanofluid suspension and we will use sodium dodec-
yl-benzenesulfonate (SDBS) as a dispersant. Further-
more, we observed the effect of nanofluid stability
with different volume fraction of SDBS. In order to
obtain stability nanofluid, we used sodium dodecyl-
benzenesulfonate (SDBS) as a dispersant.The volume
of SDBS has a great impact on the stability of CuO-
glycol nanofluid. By increasing the volume of SDBS,
the stability of CuO-glycol is better.

(3) Measured nanofluid was added into the system; the
export and import of the test section and the tube
wall temperature were constant until making use of
the heat device, heating copper tube equably.
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(4) The heat sensor and thermocouple marked correspo-
nding temperature; each measurement was repeated
to measure different mass fraction nanofluid. Finally,
we analyzed the measured data.

2.3. The Data of Convective Heat Transfer Analysis. In order
to obtain heat transfer parameters, nanofluid properties such
as density, specific heat, viscosity, and thermal conductivity
should be measured or calculated by theoretical models.

Density and specific heat are given byWang andMujum-
dar [15]

Density: 𝜌nf = (1 − 𝜑) 𝜌bf + 𝜑𝜌np. (1)

Heat capacitance is as follows:

𝐶
𝑝,nf =

(1 − 𝜑) 𝜌bf𝐶𝑝,bf + 𝜑𝜌np𝐶𝑝,np

𝜌nf
. (2)

Dynamic viscosity of nanofluid is as follows:

𝜇nf = (1 + 2.5𝜑) 𝜇bf. (3)

Reynolds number and thermal conductivity are given as
follows.

The thermal conductivity of nanoparticles is given by
Corcione [16]

𝑘nf
𝑘bf
= 1 + 4.4𝑅

𝑒

0.4

np𝑃𝑟
0.66

bf (
𝑇

𝑇
𝑓𝑟

)

10

(
𝑘np

𝑘bf
)

0.03

𝜑
0.66

𝑃
𝑟bf
=
𝜇bf𝐶𝑝,bf

𝑘
,

(4)

where 𝑇
𝑓𝑟
is freezing point of base fluid (about 273.16 K).

Reynolds number is given as follows:

Renp =
𝜌bf𝑉𝑑np

𝜇bf
=
2𝜌bf𝜅𝐵𝑇

𝜋𝜇2bf𝑑np
, (5)

where 𝜅
𝐵
is Boltzmann’s constant (1.38066 × 10−23 J/K). This

correlation is applicable for nanoparticles diameter between
10 nm and 150 nm, volume concentration between 0.2% and
9%, and nanofluid temperature between 294K and 324K.

3. The Theory of Conducted Heat

3.1. Parameter Calculation. With the convective heat transfer
between nanofluid and copper tube wall, the temperature of
nanofluid has changed on the inlet of the copper tube and
outlet of the copper tube. Consider

�̇� = 𝑞𝐶
𝑝,nfΔ𝑇,

Δ𝑇 = 𝑇out − 𝑇in,

𝑞 = 𝑆 ⋅ V ⋅ 𝜌nf,

𝑆 =
𝜋𝑑
ℎ

2

4
,

V =
𝑞V

𝑠
,

(6)

where �̇� is generated heat, where𝐶
𝑝,nf is the nanofluid specific

heat and Δ𝑇 is the temperature difference of inlet copper
and outlet copper. 𝑞 is the average nanofluid mass flow, 𝑆 is
cross-sectional area of copper tube, V is the average velocity
of nanofluid in the test section, and 𝑞V is the average volume
flow.

The nanofluid convective heat transfer coefficient ℎ and
Nu are calculated as follows [17] (which was given by Incr-
opera and DeWitt):

ℎ =
𝑞


𝑇w − 𝑇f
,

𝑞

=
�̇�

�̇�
,

Nu = ℎ𝑙
𝑘nf
,

(7)

where �̇� is the surface area of test copper tube, �̇� = 𝜋𝑑 ⋅ 𝐿, 𝑇w
is the average temperature of copper tube wall, and 𝑇f is the
average temperature of nanofluid. Consider

𝑇w =
3

∑

𝑖=1

𝑇
𝑖

3
,

𝑇f =
(𝑇out + 𝑇in)

2
.

(8)

The arbitrary𝑥heat transfer coefficient in the test section ℎ(𝑥)
is calculated as follows:

ℎ (𝑥) =
𝑞


𝑇w (𝑥) − 𝑇f (𝑥)
, (9)

where 𝑇w(𝑥) is the arbitrary 𝑥 of copper tube wall temper-
ature and 𝑇f(𝑥) is the arbitrary 𝑥 temperature of nanofluid.
Consider

𝑇f (𝑥) = 𝑇in +
𝑞


𝜌nf𝐶𝑝,nfV𝑆𝑙
. (10)

3.2. Uncertainty. The uncertainty of averaged heat transfer
coefficient is defined as follows:

𝛿𝑅 =
{

{

{

𝑁

∑

𝑖=1

(
𝜕𝑅

𝜕𝑥
𝑖

𝛿𝑥
𝑖
)

2

}

}

}

1/2

. (11)

The values of uncertainties were calculated in differ-
ent Reynolds numbers and nanoparticles volume fractions.
According to formula (11), we can get the uncertainties as
Table 1.

4. Experimental Results and Discussion

4.1. The Effect of Nanofluid Stability with Different Volume
Fraction of Dispersant. Figure 2 shows the typical microgra-
phs obtained by transmission electronmicroscopy (TEM) for
the CuO nanoparticles that were used in this study. Figure 2
confirms that the average size is 70 nm.
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Table 1: The uncertainties.

Parameter Uncertainty
Thermocouple ±5.1%
Pyroelectric sensor ±0.5%
Quantity of flow ±2.7%
Pressure ±4.5%
Transfer coefficient ±7.6%
Test section ±4.2%

4.2. Reynolds Number, Mass Fraction, and Heat Transfer Coef-
ficient. A typical set of results are shown in Figure 3 for mea-
surements at 20∘C. The effective thermal conductivity of the
nanofluid increases approximately linearly with particle vol-
ume fraction but decreases with increasing particle sizes [18,
19]. By the reason of the fact that nanoparticles size is big,
the nanofluid thermal conductivity is not obvious at 0.50%.
To obtain a comprehensive understanding of the mechanism
behind this phenomenon, we also tested the samples with
higher CuO concentration, and its heat transfer mechanism
is similar to concentration at 1.20% (as the result is similar in
the following Figures 4, 5, and 6, we did not introduce it). As
is shown in Figure 3, for low volume of CuO nanoparticles in
glycol fluid, there are no major changes in heat transfer coef-
ficient. As the volume of CuOnanoparticles and the Reynolds
number are increasing, however, the heat transfer coefficient
of nanofluid has an obvious increase.

To obtain more data of experiment, we also measure the
arbitrary of heat transfer coefficient in copper tube which is
illustrated in Figure 4 at the temperature of 20∘C.

As is shown in Figure 4 the heat transfer coefficient of
entrance has an obvious difference in other places.Themajor
reason is that it has a fierce Brownian movement in entrance
[20, 21].

4.3. Reynolds Number, Mass Fraction, and Wall Temperature.
In the third closed-loop system, shutdown valve 1 and open
valve 2 lead ethylene glycol flow into the water tank, as shown
in Figure 5.

Although there is no major effect on wall temperature in
low nanoparticle concentrations, in higher volume fractions
nanoparticles affect wall temperature. By increasing nanopar-
ticle concentrations, wall temperature decreases. The rea-
son behind this behavior is higher thermal conductivity of
nanofluid in comparison to glycol fluid.

4.4.TheNusselt Number ofNanofluid inDifferentNanoparticle
Concentrations and Different Reynolds Number. Variation of
Nusselt number with different particle concentrations at Re =
2600 is illustrated in Figure 6. It is evident that CuOnanopar-
ticles suspended in ethylene glycol enhance the Nusselt
number, except for 0.25% and 0.5% volume fractions.

4.5. The Resistance along the Project. The resistance along the
projectwas reflected by the pressure variationwith nanofluids

Figure 2: Typical TEMmicrographs of CuO nanoparticles.
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Figure 3: Convective heat transfer coefficient of CuO/glycol nano-
fluids with different mass fraction under laminar flow.

which was shown in Figure 6. And the relationship pressure
with resistance is

𝑓 =
2Δ𝑃𝑑h
𝑙𝜌nfV

, (12)

where 𝑓 is the resistance along the project, Δ𝑃 is the pressure
drop of CuO-glycol, 𝑑h is the hydraulic diameter, 𝑙 is test
section length, and V is velocity of flow.

In Figure 7, the pressure of nanofluids increased by the
mass fraction increase. The major reason is that the higher
particle volume fraction has a higher viscosity and its friction
coefficient is also higher than the low particle volume fraction
nanofluids. At the concentration of the CuO-glycol nanofluid
from 0.80% to 1.20%, although its pressure is higher than
others, the differential pressure is not very obvious. However,
in the heat transfer aspect, the higher particle volume fraction
nanofluid has a large obvious difference with the low ones.
Although the pressure drop increases would lead to the loss
of pimp power, the heat transfer coefficient increases signif-
icantly. That is to say, its thermal conductivity is higher than
the low ones. So when the range of the CuO-glycol nanofluid
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concentration is from 0.80% to 1.20%, its positive effects are
much higher than negative effects.

5. Conclusions

(1) CuO nanoparticles make the heat transfer intensity of the
fluid increase obviously in glycol fluid. It is observed that,
by increasing Reynolds number, the heat transfer coefficient
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increases, especially the inlet which is very obvious. Adding
moderate dispersant can ease nanoparticles aggregation
effectively and enable it to be steady.

(2) For higher volume fractions of CuOnanoparticle, wall
temperature decreases and heat transfer increases.

(3) For low concentration of CuO nanofluid, there is no
significant change in wall temperature, heat transfer coeffi-
cient, and Nusselt number. By increasing the mass fraction of
CuOnanofluids, wall temperature decreases and heat transfer
coefficient and Nusselt number increase.

(4) As nanofluids greatly increase the heat transfer coef-
ficient of base liquid, compared to the defect taken by the
volume of nanoparticle, its high heat transfer coefficient
would bringmore advantages. So increasing appropriately the
particle volume fraction would be beneficial to the enhance-
ment of heat transfer.

Nomenclature

𝐶
𝑝
: Specific heat (J/kg)

𝐷: Diameter of particles (nm)
𝑑h: Hydraulic diameter (mm)
Nu: Nusselt number
Pr: Prandtl number
�̇�: Generated heat (W)
Re: Reynolds number
𝜅: Boltzmann constant (J/K)
𝜇: Viscosity (kg/sm)
𝜑: Nanoparticles concentration
V: Velocity of flow (m)
bf: Base fluid
np: Nanoparticles
ℎ: Heat transfer coefficient (W/m2)
𝑘: Thermal conductivity (W/m)
𝑙: Test section length (mm)
𝑝: Power (W)
𝑞
: Heat flux (W/m2)
𝑑in: Inner diameter (mm)
𝑇: Temperature (∘C)
𝜌: Density (kg/m3)
𝑞V: Average volume flow
𝐿: Test section length (mm).
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