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This paper reports a systematic study on the elastic property of bulk silicon nanomaterials using the atomic finite element method.
The Tersoff-Brenner potential is used to describe the interaction between silicon atoms, and the atomic finite element method is
constructed in a computational scheme similar to the continuum finite element method. Young’s modulus and Poisson ratio are
calculated for [100], [110], and [111] silicon nanowires that are treated as three-dimensional structures. It is found that the nanowire
possesses the lowest Young’s modulus along the [100] direction, while the [110] nanowire has the highest value with the same radius.
The bending deformation of [100] silicon nanowire is also modeled, and the bending stiffness is calculated.

1. Introduction

Over the past decade, one-dimensional nanostructures such
as nanowires have been extensively studied through both
theoretical and experimental methods. The most important
one is the silicon nanowire (SiNW) that has been successfully
applied in the nanoelectromechanical devices such as field
effect transistors (FETs) [1–3] due to their unique optoelec-
tronic and mechanical properties [4, 5]. Researchers have
made significant contributions in the study of the elastic
property of SiNWs, in which they are considered with
different diameters and different axial or surface orientations.
It is generally accepted that Young’smodulus tends to increase
with the increasing diameter [6, 7].

The molecular dynamics and density functional theory
[6–9] are the common atomic scale simulating methods
to study the elastic property of nanostructures. However,
their computational cost is very huge and they are valid
only for the small size structures. In order to overcome this
shortcoming, Liu et al. [10, 11] proposed an order-N atomic
finite element method (AFEM) which can achieve the same
accuracy with molecular mechanics but is much faster than
the latter one. Sun and Tao [12] adopted this method to inves-
tigative the elastic properties of carbon, boron nitride, and
silicon carbide nanotubes, and Young’s moduli are accurately

obtained and the buckling behavior is better displayed. The
present work extends its application to three-dimensional
nanostructures in order to study the fine elastic property
of SiNWs. An appropriate type of Tersoff-Brenner potential
is employed to describe the atomic interaction. An atomic
element contains 17 atoms for the bulk silicon crystal, and the
global stiffness matrix and nonequilibrium force vector are
assembled similar to the continuum finite element method
(FEM). The nonlinear iteration is implemented to determine
the equilibrium.

2. Atomic Scale Modeling Method for
Bulk Silicon

Bulk silicon has the diamond lattice structure as illustrated in
Figure 1, and its elastic property has a great dependence on
their growth directions. The present work focuses mainly on
SiNWs grown along the [100], [110], and [111] crystallographic
orientations, and Figure 2 shows the representative cross
section and side view of the SiNWs with different growth
directions.

In order to describe the Si-Si interaction, the Tersoff-
Brenner potential is adoptedwith the parameter set refined by
Erhart andAlbe [13]. Tersoff-Brenner potential is amultibody
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Table 1: Parameter sets for silicon.

𝐷0 (eV) 𝑟0 (Å) 𝑆 𝛽 (Å−1) 𝛾 𝑐 𝑑 ℎ 2𝜇 𝑅 (Å) 𝐷 (Å)
3.24 2.222 1.57 1.4760 0.09253 1.13681 0.63397 0.335 0.0 2.90 0.15

Figure 1: The diamond lattice structure of bulk silicon.

potential which can be used to describe the interaction
between atoms including C, B, H, Si, and N:

𝑉𝐵 (𝑟𝐼𝐽) = 𝑉𝑅 (𝑟𝐼𝐽) − 𝐵𝐼𝐽𝑉𝐴 (𝑟𝐼𝐽) , (1)

where𝑉𝑅 and𝑉𝐴 are the repulsive pair potential and attractive
pair potential, respectively; 𝑟𝐼𝐽 is the distance from atom 𝐼 to
atom 𝐽; 𝐵𝐼𝐽 is the bond order function. All above functions
have analytic forms

𝑉𝑅 (𝑟𝐼𝐽) = 𝐷0𝑆 − 1 exp [−𝛽√2𝑆 (𝑟𝐼𝐽 − 𝑟0)] 𝑓𝑐 (𝑟𝐼𝐽) ,
𝑉𝐴 (𝑟𝐼𝐽) = 𝑆𝐷0𝑆 − 1 exp[−𝛽√2𝑆 (𝑟𝐼𝐽 − 𝑟0)]𝑓𝑐 (𝑟𝐼𝐽) ,
𝐵𝐼𝐽 = 𝐵𝐼𝐽 + 𝐵𝐽𝐼2 ,

𝐵𝐼𝐽 = {{{
1

+ ∑
(𝑘 ̸=𝑖,𝑗)

𝑓𝑐 (𝑟𝑖𝑘) exp [2𝜇 (𝑟𝑖𝑗 − 𝑟𝑖𝑘)] 𝑔 (𝜃𝑖𝑗𝑘)}}}
−1/2

,

(2)

where 𝑓𝑐(𝑟) is the cutoff function

𝑓𝑐 (𝑟) =
{{{{{{{{{

1, 𝑟 < 𝑅 − 𝐷,
12 − 12 sin(𝜋2 𝑟 − 𝑅𝐷 ) , |𝑅 − 𝑟| ≤ 𝐷,
0, 𝑅 + 𝐷 < 𝑟.

(3)

The angular function 𝑔(𝜃) is given by

𝑔 (𝜃) = 𝛾(1 + 𝑐2𝑑2 − 𝑐2
𝑑2 + [ℎ + cos 𝜃]2) . (4)

The potential parameters are listed in Table 1.

The basic idea of AFEM is to treat atoms as the continuum
FEM nodes, and each element is characterized by a set of
discrete atoms [10, 11]. For a system of 𝑁 atoms, the energy
stored in the atomic bonds can be evaluated using Tersoff-
Brenner potential, and the atomic positions are determined
by minimizing the system energy

𝐸𝑡 (x) = 𝑉𝑡 (x) −
𝑁∑
𝑖=1

F𝑖 ⋅ x𝑖,

𝑉𝑡 (x) =
𝑁∑
𝑖<𝑗

𝑉𝐵 (x𝑗 − x𝑖)
(5)

in which x = (x1, x2, . . . , x𝑛)𝑇, x𝑖 is the position of atom 𝑖, and
F𝑖 is the external force exerted on atom 𝑖.

Giving Taylor expansion of 𝐸𝑡(x) and substituting it into
𝜕𝐸𝑡𝜕x = 0 (6)

we have

KΔ𝑢 = P, (7)

where Δ𝑢 is displacement increment, K and P are, respec-
tively, the stiffness matrix and nonequilibrium force vector
given by

K = 𝜕2𝐸𝑡𝜕x𝜕x
x=x(0) =

𝜕2𝑉𝑡𝜕x𝜕x
x=x(0) ,

P = −𝜕𝐸𝑡𝜕x
x=x(0) = F − 𝜕𝑉𝑡𝜕x

x=x(0) .
(8)

For the present nonlinear system, (7) is solved iteratively
until P reaches zero. Here, Newton method is used to solve
the problem.

In AFEM, the choice of element depends on the atomic
structure and nature of atomistic interaction. In the studies
for carbon nanotubes by Liu et al. [10, 11], an AFEM element
containing 10 atoms is developed in order to capture the
multibody interaction. For the current diamond lattice struc-
ture and multibody interaction, an AFEM element should
contain 17 atoms that include 4 nearest-neighbor atoms (red
balls) and 12 second nearest-neighbor atoms (blue balls) as
shown in Figure 3.Therefore, the element stiffnessmatrix and
the nonequilibrium force vector are given by

Kelement = [[[[
[

( 𝜕2𝑉𝑡𝜕x1𝜕x1)3×3 (12
𝜕2𝑉𝑡𝜕x1𝜕x𝑖)3×48

(12
𝜕2𝑉𝑡𝜕x𝑖𝜕x1)48×3 (0)48×48

]]]]
]
,

Pelement = [
[
(F1 − 𝜕2𝑉𝑡𝜕x1 )3×1(0)48×1

]
]
.

(9)
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(a) [100]

(b) [110]

(c) [111]

Figure 2: Cross sections and side view for [100], [110], and [111] SiNWs.

Table 2: Bond lengths of [100], [110], and [111] SiNWs.

Growth directions 100 110 111
Diameter (nm) 1.21 1.83 2.43 1.21 1.47 1.77 0.83 1.20 1.59
Bond length (nm) 0.233 0.234 0.234 0.233 0.233 0.234 0.232 0.233 0.233

In the present study, all work, including assembling the
stiffness matrix and force vector and solving the equation
system, is performed with our Fortran codes. The following
steps are used. Firstly, the initial configuration of SiNWs
with a uniform bond length is constructed, and the obtained
coordinates and bond information are stored in an array.
Using the obtained array, the information about the first and
second neighbor atoms for each atom can be found and is
stored in another array. Secondly, boundary conditions are
applied to SiNWs to get the initial equilibrium coordinates
of the system. Here, we restrain one side of SiNWs and make
the other side free until the system returns to the equilibrium
configuration. Table 2 gives the bond lengths of different
types of SiNWs when the potential parameters in [13] are
employed. These results are similar to the work in [14]. In
the third step, displacement field is applied to the initial
equilibrium coordinates in order to simulate the axial tension
or compression. It is achieved by completely fixing one side of
SiNWs and incrementally imposing an axial movement at the
other end. The length of the nanowire is changed by 0.01 nm
per loading step. In the final step, the total energy of SiNWs
is obtained, and it is treated as a function of strain. With

the first- and second-order derivatives, Newton iteration
method is thus applied to obtain the equilibrium state, and
3–5 iterative steps can generally achieve a good convergence.
Therefore, the present method is far faster than molecular
dynamic method and is very efficient for the nanostructures
with a larger number of atoms.

3. Results and Discussions

In continuum mechanics, the material can be represented
by two independent constants, namely, Young’s modulus 𝑌
and Poisson’s ratio ]. For a material undergoing a uniaxial
deformation, 𝑌 is defined as [11, 15]

𝑌 = 1Ω (𝜕2𝑉𝑡𝜕𝜀2 )
𝜀=0

, (10)

where Ω is the volume corresponding to the initial equilib-
rium configurations of SiNWs; 𝑉𝑡 is the total strain energy
under tensile or compressive deformation, and 𝜀 is strain.

The Poisson ratio ] is calculated as

] = 1𝜀
𝐷 − 𝐷0𝐷0 , (11)
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Figure 3: The AFEM element for silicon.
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Figure 4: Potential versus the length change of [100] bulk Si crystal
for axial tensile/compressive deformation.

where 𝐷0 and 𝐷 are the mean diameters of SiNWs corre-
sponding to the initial and deformed equilibrium configu-
rations, respectively. They can be derived from 𝑆 = 𝜋𝐷2/4,
where 𝑆 is the cross-sectional area.

Young’smodulus for the bulk silicon crystal under tension
along [100] directions is first calculated in this paper, and it
has the bulk structure with the side length 2.16 nm. The total
potential energy is plotted versus strain in Figure 4. Using
the polynomial curve fitting, the obtained 𝑌 is 134.03GPa.
For [110] and [111] directions, the present computational
results are, respectively, 190.2GPa and 178.3GPa, which drop
in the literature reports. Ma et al. [6] used all-electron
density functional theory to calculate the binding energy, heat
of formation, and Young’s modulus of hydrogen-passivated
SiNWs with various diameters and orientations, and Young’s
moduli of bulk silicon for the [100], [110], and [111] directions
are 133.24GPa, 157.66GPa, and 163.58GPa, respectively. Lee
and Rudd [15] found that the bulk value of Young’s modulus
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Figure 5: Young’s modulus versus the mean diameter.

Table 3: Poisson ratio of [100], [110], and [111] SiNWs.

Growth directions 100 110 111
Wire number 1 2 1 2 1 2
Poisson ratio 0.14 0.14 0.19 0.22 0.22 0.25

is 122.53GPa for the [100] direction by the density functional
theory.

Next, the numerical computation is carried out for
Young’s modulus and Poisson ratio of SiNWs with different
dimensions. Table 3 shows the Poisson ratio for [100], [110],
and [111] SiNWs,which have a small dependence on diameter.
The calculated Young’s moduli are plotted in Figure 5. Leu
et al. [5] have given a systematic study of the mechanical
property of strained small diameter silicon nanowires using
ab initio density functional theory, and the values of Young’s
modulus are 139–153GPa and 43–131 GPa for [110] and [111]
SiNWs, respectively. In the researches by Ma et al. [6] and
Lee and Rudd [15], Young’s modulus increases while the
wire mean diameter increases, and at certain critical size it
approaches the bulk value.The present results agree well with
these previous studies. It can also be seen from Figure 5
that, with the same mean diameter, nanowires with different
grown directions have distinctly different Young’s moduli,
and the wires along [110] direction have the highest value
while [100] wires have the lowest value.

Besides the axial strain, the simulation has also been
carried out for the bending of SiNWs. The bending stiffness
of a SiNW can be calculated as

𝑈 = 1𝐿
𝜕2𝑉𝑡𝜕𝜅2 , (12)

where 𝐿 is the length and 𝜅 is the curvature of the bent SiNWs
and is related to the bending angle 𝜃 as 𝜅 = 𝜃/𝐿 [16].

The bending deformation can be achieved by incremen-
tally rotating the two end planes in the opposite directions
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Figure 6: The change of the total energy as a function of bending
angle for [100] SiNWs.

with respect to a line that is perpendicular to the axis of the
undeformed SiNWandpassing through its center.During the
simulating process, the two end planes are reversely rotated
0.1 rad per loading step. Two [100] SiNWs with different
diameters are studied in this paper. The change of the total
energy is plotted as a function of the bending angle in
Figure 6. Using polynomial curve fitting, we can obtain

𝑉𝑡 = 𝑎1 + 𝑎2𝜃 + 𝑎3𝜃2. (13)

Thebending stiffness can be calculated by replacing 𝜃with 𝜅𝐿.
The bending stiffness is, respectively, 5432.7 and 1964.2 ev⋅nm
for SiNWs with the diameters 2.43 nm and 1.83 nm. Menon
et al. [17] investigated the bending stiffness of T and C type
nanowires, and their computed results are 12.2 × 10−6 ev⋅m
and 8.5 × 10−6 ev⋅m, respectively.

4. Conclusions

The AFEM element is developed for the silicon nanowire,
and a basic element contains 17 atoms while it is treated as
the bulk structure. Young’s modulus and Poisson ratio are
calculated for [100], [110], and [111] SiNWs, and the bending
stiffness is also obtained. AFEM is proved to be an accurate
atomic simulation method for the bulk nanomaterials, and
it is found that the [110] nanowire has the largest Young’s
modulus while the [100] nanowire has the smallest value.
Newton iterationmethod is applied to obtain the equilibrium
state, in which the first- and second-order derivatives are
used and 3–5 iterative steps can achieve a good convergence,
and the developed method is much faster than the molecular
dynamic. In order to take advantage of the order-N nature
of AFEM, further studies can be made to combine AFEM
and the classical FEM software to solve problem with a large
number of degrees, for example, the nanoindentation of bulk
monocrystalline silicon.
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