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“Smaller is stronger,” sub-, micro-, and nanomaterials exhibit high strength, ultralarge elasticity and unusual plastic and fracture
behaviors which originate from their size effect and the low density of defects, different from their conventional bulk counterparts.
To understand the structural evolution process under external stress at atomic scale is crucial for us to reveal the essence of these
“unusual” phenomena and is momentous in the design of new materials. Our review presents the recent developments in the
methods, techniques, instrumentation, and scientific progress of atomic scale in situ deformation dynamics on single crystalline
nanowires. The super-large elasticity, plastic deformation mechanism transmission, and unusual fracture behavior related to the
experimental mechanics of nanomaterials are reviewed. In situ experimental mechanics at the atomic scale open a new research
field which is important not only to the microscopic methodology but also to the practice.

1. Introduction

Unlike conventional materials, when the size is decreased
to nanoscale, the materials such as nanowires (NWs) [1],
nanopillars [2–4], nanotubes [5–7], and nanocrystals [8, 9]
perform various unique properties, particularly in mechani-
cal performance [10]. For example, not limited to the elastic
strain of only a fraction of 0.2% as the bulk materials,
an ultralarge elastic limit (∼2%) has also been observed
in nanocrystalline (nc) or nanotwinned materials [11–14].
Recent studies show that nanostructured materials can sus-
tain ultrahigh elastic strain before yielding [1, 2, 4, 15–17]
due to the change of the origin of the plastic deformation
from inner dislocation sliding to dislocation nucleation on
sample surfaces [18]. Theoretical results even predicated
that the elastic limit can reach 8% for single crystalline
copper NWs [19], which has been proved by experimental
result [20]. For the study of plasticity, the size effect on
the dislocation behavior has also been well studied [21–
24]. Although extensive works have been done to study the
mechanical properties of nanomaterial, however, due to the
limit of experiments at atomic scale, most of the atomic
mechanisms were revealed by simulations; there would be
a lot of discrepancies and even wrong predications due
to the empirical or semiempirical potentials and boundary

conditions used during the simulation process. Although
some research groups and commercial companies have paid
much more attention to developing new in situ experimental
technique [2–4, 7, 25–30], studying themechanical properties
of nanomaterials at atomic scale is still a challenge for
us today. Here, we introduce several in situ atomic scale
experimental techniques and relevant research results. The
elastic-plastic and also the fracture behaviors of single crys-
talline copper NWs have been studied systematically, which
is important for us to understand the unusual mechanical
properties of nanomaterials at atomic scale.

2. Methods

The nanomechanics can be dated back to 1997. Wong et al.
used the AFM tip to measure the strength and the toughness
of nanorod and nanotube [5], after which more and more
researchers plunged into this new field [6]. Although a lot of
excellent works have been done and deepened our under-
standing of the mechanical properties of nanomaterials
dramatically, these techniques and studies cannot normally
reveal the actual deformationmechanisms due to the deficien-
cy of atomic scale information, such as the dislocation initia-
tion sites, the interaction activities, and the dislocation types.
So, some researchers began to use Transmission Electron
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Figure 1: (a) shows the Gatan 652 double tilt heating holder; (b) and (c) are the sketchmaps showing how the thermal bimetallic strips driven
TEM device appears to work.

Microscope (TEM) which can provide atomic-level resolu-
tion to study the mechanical properties of nanomaterials
[31]. TEM demonstrated its powerful strength in studying
the mechanical properties of nanomaterials in the following
decades [2–4, 6–8, 17, 26–32]. Several research groups and
companies are very professional in this field. For example,
Chen et al. [25] and Bai et al. [7] developed their own
mechanicalmeasurement instruments, respectively, and did a
lot of excellent works. Hystrion developed a new mechanical
measurement system, named PI-85 used in SEM and PI-
95 used in TEM to study the size effect on the mechanical
properties of micro- and nanomaterials. Professor Greer and
Professor Shan did a lot of excellent works based on these
instruments [3, 4, 28]. A Nanoindenter XP was used by
Professor Bei to study the mechanical properties of Mo-
alloy single crystal micropillars [33–35]; the effects from ore-
strain and focus ion beam milling were scientifically studied.
Gatan Company developed a single tilt straining holder.
Microstructural evolution such as dislocation nucleation and
escape has been in situ recorded in TEM [36] to exhibit
in situ deformation progress of nanocrystalline thin films
and single crystals [29]. Furthermore, NanoFactory, which
has been purchased by FEI, embedded AFM cantilever into
a piezo-driven holder (TEM-STM) to quantify the force
loaded to the sample to study the relationship between the
stress and the structure evolution [30].With the development
of semiconductor technology, MEMS has also been used
in special TEM holder to help the mechanical study of
nanomaterials [26, 27].

However, due to the introduction of complex extra
accessories in TEM, it sacrificed the “Y” tilt which is crucial

to ensure the observation of the sample along specified zone
axis to get the atomic information. Since 2008, serious efforts
have been made by Professor Han’s group, colloidal thin film
contraction method [37–41]; thermal bimetallic strips driven
TEM device have been developed continuously [20, 22, 24,
42–44]. Colloidal thin film contraction method is to make
several preset cracks on a commercial TEMcolloidal thin film
grid; electron beam irradiation provides the force loaded to
the NWs with two ends bridged on the crack of the colloidal
thin film to do the tensile and bending tests [22, 37–41].
Because there is no extra device introduced into TEM, the
sample holder is the standard double tilts TEM holder, so it is
easy to tilt the sample to a low index zone axis to observe the
sample which ensures the in situ test at atomic scale.Thermal
bimetallic strips driven TEM device is another new novel
method [20, 23, 24, 42–44] which is effective in conducting
the in situ tensile tests of materials. As shown in Figure 1, the
main part is two bimetallic strips adhered on a TEM ring,
with aGatan 652 double tilt heatingTEMholder (Figure 1(a));
these two bimetallic strips provide planar loading force to
the sample bridged on the two bimetallic strips (Figures
1(b) and 1(c)); this smart device has the same size with the
commercial TEM grid, so there is no sacrifice for the double
tilt capability as the colloidal thin film contraction method
butwith a controllable strain rate. Recently a newTEMholder
is invented which can not only do the in situ deformation
experiments at atomic scale but also quantify the force loaded
to the sample. It is a completely new system to study the
mechanical properties of nanomaterials which will give us
more evolution information during the deformation process
[45].
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Figure 2: ((a)–(d)) A Si NW during the in situ application of axial tension. The arrows indicate the corresponding positions of the extended
NW throughout the procedure. ((e)–(h)) Another example of an extended Si NWwith buckling character.The axial elongation of the Si single
crystalline NWs can be revealed by comparing the corresponding 𝑙0 and 𝑙𝑓 [41].

3. Large Strain Elasticity and Plasticity of
Semiconductor NWs

Today, semiconductor NWs, such as silicon NWs [49–51],
GaAs NWs [52, 53], and InAs NWs [54, 55], have been widely
used for fabricating various electronic and optoelectronic
nanodevices due to their excellent properties. Although
recent results show that retained elastic-plastic strains in
NWs significantly affect their electronic properties [56], there
is only limited information on the mechanical property of
the Si NWs due to the difficulty of carrying out in situ
tensile or bendingmeasurements on individual NWs. Several
experimental approaches have been developed to study the
mechanical properties ofNWs andnanotubes (NTs) based on
atomic force microscopy (AFM) at nanometer-scale spatial
resolution [1, 5, 6]. However, the failure in revealing the
atomic scale structural evolution information limited the
application of AFM measurements in the in situ elastic-
plastic-fracture study. With the size decreased to nanoscale,
recent works show that elastic strain of silicon nanowires [51]
can reach about 10%, which is about 100 times larger than that
of their bulk counterpart; a few samples even reached ∼16%
tensile strain, with estimated fracture stress up to ∼20GPa.
Besides, the elastic modulus of amorphous Al2O3 increases
significantly when the thickness of the layer is smaller

than 5 nm [57], which is attributed to the reconstruction of
the bonding at the surface of the material, coupling with
the increase of the surface-to-volume ratio with nanoscale
dimensions. With the bimetallic method [20, 23, 42–44],
the origin of high elastic strain (13%) in amorphous silica
nanowires has been successfully revealed, attributed to the
bond’s elastic elongation and the change of bond angle for
amorphous nanomaterials [42].

With colloidal thin film contraction method developed
by Professor Han’s group [37–41], in situ TEM observation of
the elastic-plastic-fracture processes of a single Si NW was
recorded at atomic resolution. Large strain plasticity (LSP) of
silica NWs has been first reported which subverts the brittle
nature recognition of silicon in its bulk form [41]. Figures
2(a)–2(d) show a series of images of a single crystal Si NW
that was extended by the force created by the shrink of the
broken colloidal thin film. A clear plastic deformation was
observed at the center of the NW; such LSPwas also observed
in SiC NWs [37], another brittle material in its bulk form.
Both of these two results show that the LSP is attributed to a
brittle-ductile transition which originates from a dislocation-
initiated amorphization.MD simulation revealed a transition
in the onset of silicon plasticity which depended on the
temperature and stress magnitude [58]. For the case of high
temperature and low stress, partial dislocation loops are
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nucleated in the {111} glide set planes. However, at low
temperature and very high stress, perfect dislocation loops
are formed in the other set of {111} planes called shuffle.
The following study of the mechanical property of pure
amorphous brittle materials, silica, confirmed that when the
size decreased to nanoscale, the materials will perform LSP,
originating from the broken rotation and reformation of Si-
O bond [39]. Furthermore, the stain rate effect [43] has
been successfully studied with the bimetallic method [20,
23, 42–44], shedding light on the deformation behavior of
amorphous materials.

4. Elastic Strain Limit of Single Crystalline
Metallic NWs

Conventional materials yield at an elastic strain of only a
fraction of 1% [59].This apparent ending of the elastic regime
is governed by the activation of dislocations (and/or their
sources) that are inevitably preexisting inside the material.
Based on theHall-Petch effect [60, 61], researchers strengthen
materials via inner grain nanocrystallization [11–14, 62, 63] or
surface nanocrystallization [64] and so forth. An ultralarge
elastic limit (∼2%) has also been observed in nanocrystalline
(NC) [59] or nanotwinned materials [11, 12, 14, 65]. During
the transition of the origin of the plastic deformation from
inner dislocation sliding to dislocation nucleation on sample
surfaces [18, 19, 66], small volume crystals always sustain
ultrahigh elastic strain before yielding [15–17, 32]. It has been
presumed that the ideal elastic strain of metallic crystals can
approach 8% [18]. After Taylor observed that antimony wires
with a diameter of 30 𝜇m can be repeatedly bent without
breaking [67], subsequent mechanical tests on a variety of
whiskers [10, 68], micro- and nanopillars [2–4, 16, 33–35, 69–
74], NWs [1, 34–38, 66], nanocrystal [8, 9], and nanotubes
(NTs) [5–7, 31] have revealed that thesemicro- and nanoscale
components can sustain large elastic strains and the yield and
flow stresses increase when the size decreases. When the size
was decreased, the interior dislocations density will decrease
dramatically; with the development of sample preparation
method, perfect NWswith nearly no interior dislocations can
be prepared [75], thematerials can be defined as defect-scarce
nanostructures [66], new dislocations have to be nucleated
on free surface or stress concentration region which requires
high stress which is approaching the theoretical stress, and
the elastic strain is approaching the theoretical elastic limit.
Chen et al. [66] measured the surface dislocation nucleation
strengths in high-quality ⟨110⟩ Pd nanowhiskers subjected to
uniaxial tension directly and found the nucleation strengths
were weakly size- and strain rate-dependent, and a strong
temperature dependence was first uncovered.

Benefiting from the newly in situ deformation methods
[20, 23, 42–45], Yue et al. [20] and Wang et al. [76] have
observed super elasticity close to or beyond the theoretical
limit. Using the bimetallic tensile technique [20, 23, 42–45],
in situ tensile test of Cu NWs with different sizes has been
conducted. Figure 3 shows the size effect on the elastic strain
limit of Cu NWs via direct measurements during tensile
testing. The elastic strain achievable in Cu NWs has been
found to increase with the decreasing sample diameter, with
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Figure 3: Size dependence of the elastic strain limit of single
crystalline Cu NWs and fibers [20].

an approximate elastic strain of 7.2% observed directly during
the deformation of a Cu NW with a diameter of ∼5.8 nm.
The process of lengthening the atomic bonds at atomic scale
has been captured, and the calculated strain approached the
theoretical elastic limit predicted by MD simulation [19].
Besides, with colloidal thin film contraction method [22, 24,
37–41], Wang et al. [76] observed a continuous and gradual
lattice deformation in bending nickel NWs to a reversible
shear strain as high as 34.6%. This complete continuous
lattice straining, four times that of the theoretical elastic
strain limit for unconstrained loading, was attributed to
transitions from face-centred cubic lattice to body-centred
tetragonal structure and to reoriented face-centred cubic
structurewhich is differentwith the traditional tensile strains.

5. Pseudoelasticity through Phase
Transformations and Reorientation of
Single Crystalline NWs

Structural transformation of nanomaterial was observed
from FCC Au NWs by Diao et al. [77]. Phase transformation
happened accompanied with more than 30% contraction
strain when the size was reduced to 1.83 nm × 1.83 nm;
the structure transformed from a FCC to a BCT structure,
attributed to surface induced reorientation. Such surface
induced analogous phenomena have been observed widely
in many metallic NWs, such as Au [74, 78, 79], NiAl [80],
Ag [81], Pd [82], Fe [83], Cu-Zr [84, 85], and Cu [48, 86].
Recently, Seo et al. [46] reported a superplasticity of defect-
free Au NWs on tensile deformation and demonstrated a size
effect of the Au, Pd, and AuPd NWs on the twin propagation
stress without reduction of plasticity [87]. Figure 4 shows the
entire tensile process of the Au NW. Seo et al. described the
whole tensile deformation using three distinctive stages as
shown in the stress-strain curve: Region 1 is the superelastic
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Figure 4: ((a)–(f)) SEM images show the entire tensile process until a final fracture of single Au NW; (g) is the corresponding stress-strain
curve of a ⟨110⟩ Au NW for the whole tensile process. 𝜀 in ((a)–(f)) represents total strain in each tensile stage [46].

and super strong region, Region 2 is the superplastic region
which will be a recoverable strain (or a rubber-like pseudoe-
lastic) indicated by MD simulations [48], and Region 3 is the
tensile process of a reoriented ⟨100⟩ NW. Guo et al. [47] also
observed a superelasticity of individual VO2 NWs which is
arising from the M1-M2 structural phase transition. Figure 5
shows how the M2 phase nucleates, grows, and propagates.
A plateau was detected in the stress-strain curve, indicating
the superelasticity of the NW. Figures 6(b)–6(d) are the TEM
images which show the phase transformation fromM1 toM2.

6. Atomic Plastic Mechanisms of the Size
Effects on Single Crystalline Metallic NWs

The plasticity of metallic NWs in response to mechani-
cal stresses is another important aspect to be considered

in designing nanoelectromechanical system (NEMS) and
microelectromechanical system (MEMS), in which metallic
NWs serve as building blocks. Yu et al. discovered the high
strong size effect on deformation twinning [88]. The stress
required for deformation twinning of single crystal titanium
alloy increases drastically until the sample size is reduced to
one micrometer, below which the deformation twinning is
entirely replaced by ordinary dislocation plasticity. It seems
that there is an obvious size effect on the types of dislocations,
which changed between full dislocations and partial dislo-
cations [21, 23]. For FCC metals, such as Cu, slip of full (or
extended) dislocations attributes to the plastic deformation
with bulk size. High strain rate may cause deformation twin-
ning (DT) which usually happened at very low temperature
[89–93]. However, when the characteristic physical size of
these FCC metals becomes small, it is of great interest to
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note that such well-documented mechanical behavior may
change. For example, an interesting observation in earlier
study reveals that the general trend of diminishing DT breaks
downwhen the grain size in a polycrystallinemetal is reduced
into ultrafine-grained (UFG) or NC regimes. Stacking faults
and deformation twins, originating from partial dislocations,
become more detectable and even preferable than ordinary
full dislocation slip [21, 23, 94–99]. With the STM-TEM
holder produced by NanoFactory, Zheng et al. studied the
deformation behaviors of Au NWs with various diameters
(even<10 nm) [30]. In situ atomic scale observation indicated
that partial dislocations emitted from free surfaces domi-
nated the deformation of the sub-10 nm-sized gold NWs.
Furthermore, lattice slips would dominate the plastic events
with the size below ∼6 nm [100–102]. Seo et al. reported that
defect-free Au NWs (∼100 nm) exhibit superplasticity upon
tensile deformation, attributed to the propagation of twin
boundaries [87]. Partial/twinning was found to dominate the
plasticity in Au nanowhiskers with diameters below 200 nm
[103, 104]. With the thermal bimetallic strips tensile device
[20, 23, 42–45], Yue et al. [23] quantitatively revealed an
obvious effect of the sample dimensions on the plasticity
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mechanisms of Cu single crystalline NWs with diameters
between 1000 and 70 nm in a HRTEM. Figure 6 shows
the summary of the size effect on the plastic contribution
of the partial dislocation mediated plasticity and the full
dislocation. When the size was reduced to ∼150 nm, the
normal full dislocation slip was overwhelmed by partial
dislocation mediated plasticity.

7. Rubber-Like Fracture Behaviors of Single
Crystalline Cu NWs

An unusual kind of deformation behavior [105, 106] has
been discovered since 1932 [107] which have puzzled the
world over 60 years. Such so-called pseudoelastic rubber-
like behavior happened in a lot of alloys (including Au-Cd,
Au-Cu-Zn, Cu-Al-Ni, and Cu-Zn-Al) [108–110]; after aging
for some time in a martensitic state, these alloys can be
deformed like a soft and pseudoelastic rubber. Recently, such

rubber-like pseudoelastic behavior has also been discovered
in single crystalline Cu NWs in atomistic simulations [48]
on top of the experimental confirmation. Figure 7 shows the
cross section intersecting the twin boundary, indicating the
lattice transition between the two domains. Upon loading
and unloading in single crystalline Cu NWs, this behavior
is different from the classical austenite-to-martensite phase
transformation reported before but a reversible crystallo-
graphic lattice reorientation driven by the high surface-stress-
induced internal stresses due to high surface-to-volume
ratios at the nanoscale level [48]. This phenomenon occurs
only in NWs but does not occur in bulk materials.

With size and the dislocation density decreasing, a lot
of fabulous phenomena have been exhibited to our field of
vision. For small volume crystals with large surface area, such
as whiskers [75, 111] and wires [1, 74] or pillars [33–35, 69–
72, 112], in which the defect density can be made very low,
tests have found that the apparent yield strength increases
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significantly and correspondingly the elastic strain becomes
much larger.This behavior is in contrast to conventional bulk
metals, which will yield at a uniaxial tensile stress of tens
of megapascals and an elastic strain of only a fraction of
1%. It has been confirmed that metallic crystals can perform
ultralarge elastic strain from both the MD simulation result
(8%) [19] and the experimental result (7.2%) [20]. However,
it is still uncertain what would be the consequence when
such huge elastic energies stored in the strained NWs are
released in a short time, that is, the strain NWs’ fracture
behavior. Zheng et al. [30] observed that the Au nanocrystal
exhibits a phase transformation from a face-centered cubic to
a body-centered tetragonal structure after failure. Sun et al.
[113] attributed such highly unusual Coble pseudoelasticity
of Ag nanoparticles to surface diffusion. Based on the new
homemade bimetallic technique that can perform in situ
axial tensile deformation on nanomaterials (including single
crystal [20, 23], nanofilm [20, 24, 44], and NWs [22, 42, 43]),
in situ TEM tensile tests on copper NWs at a temperature
close to room temperature [44], an astonishing crystalline-
liquid-rubber-like behavior of the fractured single crystalline
Cu NWs was revealed. From Figure 8, we can find that the
retractable strain of the fractured crystallineNWs approaches
over 35%. These abnormal behaviors originate from the
fast release of the ultralarge elastic energy of the tensile
NWs. The release of the ultralarge elastic energy has been
estimated to generate a huge reverse stress as high as∼10GPa.
The consequent pressure gradient can increase the effective

diffusion coefficient [114–116]. The estimated concomitant
temperature increase can reach as high as 0.6𝑇m of copper
(𝑇m is the melting point) on the fractured tip of the NWs.
Atomic diffusion process has been enhanced greatly due to
the temperature increase.

8. Diffusion Dominated the Deformation of
Nanomaterial

Based on the Hall-Petch relation [117, 118], decreasing the
crystalline (grain) size can be used to strengthen materials,
which is called “smaller is stronger” and the sample size
effect on the strength and dislocation mechanisms has been
studied intensively for these years [2–4, 15–17, 22, 23, 28,
32, 33, 88]. Deformation mechanism for crystalline materials
at room temperature will change when the sample size
was decreased. Yu et al. [88] reported a strong size effect
on deformation twinning of Ti-5 at.% Al single crystal.
They developed a “stimulated slip” model to explain such
strong size dependence of deformation twinning. Yue et al.
[23] found the full dislocation induced deformation will be
replaced by partial dislocation mediated plasticity (PDMP)
(including deformation twinning) when the sample size is
below 150 nm. They also demonstrated this transition with
quantitative contributions from PDMP and full dislocation.
Recently, Tian et al. [119] find that such traditional plasticity
mechanisms (dislocation slip and deformation twinning) will
be replaced by diffusional deformation when the size of Sn
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single crystal is decreased to 130 nm; “smaller is stronger”
has also been changed to “smaller is weaker.” They found
the yield strength of sample with size of 130 nm was 5 times
lower than the yield strength of the 450 nm sample; this
“smaller is weaker” trend is different from the “smaller is
stronger” trend. And, a liquid drop-like fracture process
which is mediated by the diffusional deformation has been
revealed in Tian’s study.

Sun et al. [113] also observed a similar phenomenon from
which they claimed that surface diffusion played the vital
role in such highly unusual Coble pseudoelasticity of Ag
nanoparticles. In their study, the Ag nanoparticle deformed
like a liquid droplet but remained in its crystalline character;
no dislocation activities were found during the process.
Combined with MD simulation results, they found that the
change of shape was controlled by single adatommovements,
not by chain or island processes. Such Coble pseudoelasticity
is different from the conventional pseudoelasticity driven by
martensitic transformations [108–110, 120]; surface-diffusion-
mediated pseudoelastic deformation happened in the sub-
10 nm regime at room temperature, which is important to
understand the shape change and shape stability of sub-10 nm
material components.

9. Conclusion

With the development of in situ atomic scale experimental
methods, the mechanical study of single crystalline NWs and
other nanomaterials has achieved rapid and great progress,
which benefits us greatly in understanding the essence of
the unusually properties of nanomaterials. In this review, we
summarized most of the in situ atomic scale technological
advancements in instruments in the past decades. Our
newly thermal bimetallic strips TEM device is highlighted
and mainly introduced. Due to the fact that deformation
mechanism of the micro-NPs has been comprehensively
reviewed by other researchers, we only provide a brief
summary about the size effect on the elastic, plastic, and
even the fracture behaviors of single crystalline NWs. When
the size is reduced to nanoscale, especially down to 100 nm,
superelasticity, pseudoelasticity, superplasticity, cross-over
of plasticity mechanism, and unusual fracture behavior
have been demonstrated in this review which is helpful in
understanding the mechanical properties not only for single
crystalline metallic NWs but also for other nanomaterials
such as thin films and nanoparticles.
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