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The most critical issue on flexible electronics such as organic solar-cell, OLEDs, and flexible display is the protection of the core
active materials from the degradation by water and oxygen. The defect of barrier film is the main channel for the transmission of
water and oxygen molecules. Herein, in order to monitor the defects of barrier films, we have developed anthracene boronic acid
pinacol ester (ABAPE) sensor which is very sensitive to water vapor.When ABAPE film is exposed to water, it gives off fluorescence
emission at 389 and 408 nm under excitation peak at 366 nm. Based on the fluorescence microscopy and SEM images, the optical
method using the ABAPE sensor film can monitor the defects of barrier film smaller than 1𝜇m. This result suggests that ABAPE
can be utilized to monitor the defect and water vapor transmission rate (WVTR) in the barrier film.

1. Introduction

Flexible electronics should be bending, rugged, and rollable
without loss of their properties such as optical properties,
electrical properties, and mechanical properties [1–4]. How-
ever, plastics cannot be used as a substrate for flexible elec-
tronics because they cannot protect the degradation of active
materials by the reaction with water or oxygen. As oxygen
and water can penetrate and diffuse quickly through polymer
film, 99% of electroluminescence (EL) can be lost in 150min
[5, 6]. In order to achieve lifetimes of tens of thousands
of hours, water vapor transmission rate (WVTR) must be
under 10−6 g/m2/day, and oxygen transmission rates (OTR)
must be under 10−3 cm3/m2/day. To meet the requirements,
the high performance barrier film has been developed to
block water vapor and oxygen to penetrate the device. The
defect of barrier film, such as pinholes, line defects, and
cracks, is the main channel for the transmission of water
and oxygen molecules. Therefore, reducing the defect in the
barrier film is crucial to enhance the barrier property [7–
10]. Many previous studies reported the relationship between
the water vapor transmission rate and the defect density of

the films [11–16]. The water transmission volume (𝑄) can be
determined by (1), where 𝐴 is the total area of defects, 𝐷 is
the diffusion coefficient of water molecules in the film, 𝐿 is
the film thickness, 𝜙 is themoisture concentration on the film
surface, 𝑆 is the total film area, and𝑁 is the number of defects
[15].

𝑄 = 𝐴 ⋅ 𝐷 ⋅ 𝑆 ⋅ 𝑃𝐿 = 𝐴 ⋅ 𝐷 ⋅ 𝜙𝐿 , (1)

WVTR =
𝑁

∑
0

𝑁(𝑄𝑆 ) . (2)

The water vapor transmission rate can be obtained by (2)
using the total film area (𝑆) and number of defects (𝑁). This
analytic equation predicts that the defect density is linear to
the water vapor transmission rate (WVTR). Recently, various
image optical systems have been introduced to monitor
small-sized defects. For example, the Coherence Correlation
Interferometer (CCI) and the Wavelength Scanning Interfer-
ometry (WSI) were utilized tomeasure the density ofmicron-
scale defects, in which 100∼150 defects of 3 𝜇mdiameter were
present per unit area (mm2). However, because CCI andWSI

Hindawi Publishing Corporation
Journal of Nanomaterials
Volume 2016, Article ID 9128783, 6 pages
http://dx.doi.org/10.1155/2016/9128783



2 Journal of Nanomaterials

Encapsulation

Barrier film

ABAPE

(a)

Glass
Barrier film

(b)

Figure 1: The ABAPE coated barrier film which is encapsulated in the glove box, (a) side view and (b) upper view.

system are so sophisticated to measure the defect density
in the barrier film, a simple and convenient measurement
system should be developed [14].

In this study, we investigate high sensitive water film
sensor to monitor the film defects. Anthracene boronic acid
pinacol ester (ABAPE) increases its fluorescence properties,
which is very sensitive to water. When water is added, amino
group of ABAPE was protonated. Emission peak appears at
389 nm and 408 nm under 366 nm UV lights [8]. ABAPE
was dissolved in 1,2-dichloroethane (DCE) to evaluate water
sensitivity. Photoluminescence spectra and water sensitivity
were characterized by using a photoluminescence spec-
trophotometer (Sinco S-3100, Korea). The film surface has
been investigated and characterized using the fluorescence
microscope and the optical microscope.

2. Experimental

2.1. The Synthesis of Anthracene Boronic Acid Pinacol
Ester (ABAPE). Sodium hydride (60%), 9-(methylamino-
methyl)anthracene, 2-bromomethylphenylboronic acid pina-
col ester,N,N-dimethylmethanamide (DMF), dichloroethane
(DCE), and methanol were purchased from Sigma Co.
(USA, http://www.sigmaaldrich.com/). And silica gel (60N,
spherical, neutral) was purchased from Kanto Chemical. All
other reagents were analytical grade and used as received.
Triplex distilled water was used in the experiment.

Sodium hydride (60%, 2.1mmol) was added, after 9-
(methylaminomethyl) anthracene (0.84mmol) was dissolved
inDMF (70mL).The solutionwas stirred for 1 h at room tem-
perature. 2-Bromomethylphenylboronic acid pinacol ester
(3.37mmol) was added and the solution was stirred at room
temperature for 1 h. After concentration under pressure, the
resulting residuewas dissolved in dichloroethane andwashed
with water. The residue was chromatographed on silica gel
(dichloromethane :methanol = 10 : 1 as eluent).

2.2. Characterization of Water Sensitivity of ABAPE Solution.
The sensitivity of ABAPE to water was characterized by using
a fluorescence spectrometer (FluoroMate FS-2, Scinco Co.,
Seoul, Republic of Korea). First, 2 × 10−5, 2 × 10−6, 2 × 10−7,
and 2 × 10−8mol concentrations of ABAPE were prepared
using anhydrous dichloroethane. Di-water in anhydrous
ethanol (10%, v/v) stock solution was prepared to control

small quantity of water. 0.5𝜇L of anhydrous ethanol stock
solution was added in 2.5mL of ABAPE in DCE solution
using micro syringe. The prepared water solution was in the
range of 20 to 160 ppm. Dilution effect by the repetition of
water injection is ignored.

2.3. Fabrication and Characterization of Barrier Films with
Defects. A barrier film was fabricated to analyze the defects
generated in the inorganic layer. The defects are specially
studied after mechanical loading. First, a PET film substrate
(SKC, thickness 100𝜇m) was cleaned by ultrasonication and
then dried. To minimize the residual stress inside the PET
film, the film was annealed at 100∘C for 1 h. And then to
fabricate an undercoat layer, epoxy resin was coated by
spin-coating. Finally, 100 nm of alumina layer (Al

2
O
3
) was

deposited by RF magnetron sputtering.
The defects in the barrier film were investigated by using

the fluorescence microscopy and SEM. In order to prepare
the test coupon, first, ABAPE coated layer was spin-coated
onto the Al

2
O
3
layer of the barrier film. ABAPE solution

was prepared with 1 wt% of polyethylene oxide (PEO) mixed
with 20mMofABAPE in dichloroethane as a solvent. Finally,
to prevent from penetrating water molecules in the air
to ABAPE layer, the film was encapsulated with a sealant
(Nagase 5570) in the glove box, as shown in Figure 1.

3. Results and Discussion

The sensing mechanism of water molecule by ABAPE is
as shown in Figure 2. Without water, lone-pair electron
of nitrogen atoms quenches the fluorescence property of
anthracene moiety. When water is added, Lewis acid and
electron donor of nitrogen atom dissociate water molecules.
And then, zwitter ionic structure is formed. As a result,
lone-pair of nitrogen atom cannot proceeds photo-induced
electron transfer to quench the fluorescence characteristics
of anthracene moiety. As a result, anthracene moiety gives off
fluorescence emissionwhose emission peaks are shown at 389
and 408 nm under excitation peak at 366 nm [17–20].

Figure 3 shows the water sensitivity of ABAPE solution
which indicates an increase of PL intensity as a function of the
added amount ofwater in the solution.Generally, PL intensity
increases linearly when tens of ppm of water is added in
ABAPE solution. For instance, the intensity in 0.2𝜇MABAPE
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Figure 2: Water sensing mechanism of ABAPE.
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Figure 3: PL intensity as a function of the added amount of water in the solution.

solution increases 5 times when 7 × 10−3 ppm of water is
added. In contrast, the intensity in 20 𝜇M ABAPE solution
is increasing to 10% because added water is too low in the
solution. In other words, the lower the ABAPE concentration
in the solution is, the more a trace of water reacts effectively.

In order to investigate the defect of the barrier film,
the film was deformed with 25 kN of tensile stress by using
the tensile testing machine. Figure 4 shows the stress/strain
curve of the barrier film according to the different elongation
percentage. In the range of the tensile strain smaller than
6%, the film shows elastic deformation. However, the film
shows the plastic deformation, when the film is deformed
irreversibly over 6%. The fluorescent signal from the ABAPE
molecules is observed. In addition, the defects are observed
by using a fluorescent microscope when being exposed to
water through the defects in the films. Figures 5 and 6 show
the fluorescencemicroscopy image and SEM image of barrier
film coated with ABAPE solution after the film was drawn
with the different tensile strain. The films with 3%, 8%, and
22% of the tensile strain were prepared and characterized. 3%
elongated film shows the maximum tensile stress of 67MPa,
but no defect lines. This suggests that the film is in the range

of the elastic region, but no plastic damage in the film. In
contrast, 8% and 22% tensile elongated films show many line
defects which are the evidence of the plastic deformation of
the films.The defect has developed in the vertical direction of
the applied force. The gap between the defects is estimated to
be about 50 𝜇mwith the thickness of 1 𝜇m. In case of the 22%
tensile strained film, the number of defects was getting more,
but the gap between defects was getting smaller.

Figure 7 indicates the defect density and the fluorescence
intensity change of ABAPE coated barrier films after the films
are exposed to water vapor in the air for 1 day. The defect
density is determined by the ratio of the defect area to the
total area based on the fluorescence microscopic images as
estimated using Image J program. As shown in Figure 7,
the defect density and the fluorescence intensity of the 22%
elongated film aremuch larger than that of 8% elongated film.
It should be noted that the defect density and fluorescence
intensity of the 3% elongated film are not changed because
no defect is observed in the film.These results suggest that the
optical method using the ABAPE sensor film can be utilized
to monitor the defect in the barrier film.
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Figure 4: Stress-strain curve of the ABAPE coated barrier film as a function of the tensile elongation. (a) 3%, (b) 8%, and (c) 22%.
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Figure 5: The fluorescence microscopy image of the barrier film coated with ABAPE solution as a function of the tensile elongation. (a) 3%,
(b) 8%, and (c) 22%.
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Figure 6: SEM image of the barrier film coated with ABAPE solution as a function of the tensile elongation. (a) 3%, (b) 8%, and (c) 22%.
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Figure 7: The defect density and the fluorescence intensity change of ABAPE coated barrier films after the films are exposed to water vapor.
(a) 3%, (b) 8%, and (c) 22% tensile elongated film.
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4. Conclusion

In this study, we investigate a sensitive film sensor to monitor
the defects of barrier films. Anthracene boronic acid pinacol
ester (ABAPE) increases its fluorescence properties, which is
very sensitive to water vapor. When ABAPE film is exposed
to water vapor, it gives off fluorescence emission at 389
and 408 nm under excitation peak at 366 nm. Based on
the fluorescence microscopy and SEM image, the optical
method using the ABAPE sensor film canmonitor the defects
of barrier film smaller than 1 𝜇m. This result suggests that
ABAPE can be utilized to monitor the defect in the barrier
film.
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