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To improve the precision and sensitivity of the detection in near infrared gas detection system, the selection of light source and
design of gas chamber structure are two key links. In this paper, the near infrared (NIR) light sources fabricated with PbSe quantum
dots (QDs) and a new gas cell structure using an ellipsoid reflector were designed to test the concentration of methane (CH4). The
double wavelengths differential detectionmethod was used in the paper.The signal wavelength is 1.665 𝜇m from theNIRQD-based
light source with 5.1 nm PbSe QDs. The reference wavelength is 1.943 𝜇m from the NIR QD-based light source with 6.1 nm PbSe
QDs. The experimental results show that the differential gain signal could be enhanced 80 times when the major axis, the focus,
and the open length of the ellipsoid reflector are 4.18 cm, 3.98 cm, and 0.36 cm, respectively.The structure will be convenient for the
signal amplifying, AD converting, and other process in the latter circuits, and therefore both the detection sensitivity and precision
can be improved.

1. Introduction

Methane (CH4) is a flammable and explosive gas. In recent
years, great injuries and property losses were caused by
frequent gas explosions, which has increasingly attracted the
attention of the general public and the government. So, it
has become an urgent problem to detect the concentration of
methane immediately and accurately. In addition, methane
is also a major greenhouse gas in the atmosphere, whose
concentration needs to be detected exactly [1–4].

Existing methods for methane detection rely mostly on
vector catalytic combustion, thermal conductivity, optical
interferometry, and infrared absorption. Among various
available methods, infrared spectroscopy absorption has its
unique advantages over the other techniques [5, 6].The sens-
ing parts of infrared spectroscopy absorption gas detection
system include an infrared launch system, a gas chamber,
and a photoelectric conversion device. The selection of light
source and design of gas chamber structure are two key links

to improve the accuracy and sensitivity of detection. Recently,
the emergence of the quantum cascade laser provides an
alternate solution as infrared light source. However, quantum
cascade laser as light source is expensive with complicated
designs and structures, making it less desirable for the rising
needs on portable, simple, and low-cost infrared gas sensors.

Semiconductor quantum dots (QDs) have been inves-
tigated and have shown very unique properties, such as
the quantum confined optical property [7–13]. They usually
possess high photoluminescence (PL) quantum yield (QY)
with size dependent tunable wavelength emissions, which
makes them promising for light conversion [14–16]. Among
them, the PbSe bulk material has a small bandgap of 0.28 eV
at room temperature and a very large exciton Bohr radius
of 46 nm [17–24]. As a result, PbSe QDs show very strong
quantumconfinement andhigh quantumyield inNIR region.
Their band edge photoluminescence peaks span over a wide
infrared wavelength region of 1−4 𝜇m [25–29]. The wave-
length can be adjusted merely by changing the particle size to
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cover the particular absorption frequencies of many kinds of
gases in the NIR region. As a matter of fact, the NIR emitting
QDs with narrow bandgaps have great application potential
in gas detection. Compared to other infrared light sources for
gas detection including infrared thermal emitter and semi-
conductor lasers, these NIR QDs have relative high modulate
rate without the large thermal inertia, narrow emitting band
without obvious interference, low cost, and small volume.

The normal gas cell in the infrared gas detection system
can be divided into two categories: transmission type gas
cell and reflecting type gas cell. When the narrowband light
source is used to measure CH4 concentration, the transmis-
sion type gas cell is more prone to produce coherent noise,
which will affect the sensitivity of the system; the reflecting
type gas chamber is more prone to produce interference
noise, which can also bring a certain impact on the sensitivity
of system [30–32].

In this paper, the NIR PbSe QDs and a new gas cell
structure using an ellipsoid reflector were designed to analyze
the concentration of CH4. Based on the double wavelengths
differential detection method, the NIR PbSe QDs with the
particle sizes of 5.1 and 6.1 nm are chosen as the NIR light
sources. Due to the narrow PL spectra of NIR PbSe QDs,
the filter needed in the conditional detection system can be
omitted. Considering the low sensitivity of traditional gas
cell structures, a new gas cell structure using an ellipsoid
reflector is designed.Themathmodel of the ellipsoid reflector
is proposed. And the relationship between the parameters of
the ellipsoid reflector and the light intensity of the detector is
described. It can be proved that the structure can enhance the
intensity of the output signal.

2. Establishment and Analysis of
the Detection Model

In order to improve the sensitivity of infrared detection, a
new gas cell structure using an ellipsoid reflector is designed,
as shown in Figure 1. First of all, we establish the theoretical
math model. 𝑎 and 𝑏 are the semimajor axis and the semimi-
nor axis of the ellipsoid reflector, respectively. As shown in
Figure 1, 𝑐 = √𝑎2 − 𝑏2 and 𝑒 = 𝑐/𝑎 < 1 and the focal point
coordinates are𝐹1(+𝑐, 0) and𝐹2(−𝑐, 0).The signal light source
𝐴 is placed at 𝐹1; the reference light source 𝐵 is placed at a
defocus position, and the detector is on 𝐹2.

The NIR QDs light source can be treated as a cosine
radiation. Radiation intensity in any direction 𝜃 is

𝐼 (𝜃) = ∑
𝑖

𝐼0 (𝜆𝑖) cos 𝜃, (1)

where 𝐼0(𝜆𝑖) is radiation intensity ofwavelength𝜆𝑖 along axes.
According to Beer-Lambert law [33–35], the relationship

between the reflected light radiation intensity and the inci-
dent light radiation intensity can be expressed as

𝐼𝑡 (𝜃) = ∑
𝑖

𝐼0 (𝜆𝑖) cos 𝜃𝜌 (𝜆𝑖) 𝑒−𝜎(𝜆𝑖)𝐶𝐿

= ∑
𝑖

𝐼0 (𝜆𝑖) cos 𝜃𝜌 (𝜆𝑖) 𝑒−𝛼(𝜆𝑖)𝐿,
(2)
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Figure 1: Diagram of ellipsoid reflector gas cell.

where 𝜎(𝜆𝑖) is absorption cross section of CH4; 𝐶 is the
concentration of CH4; 𝜌(𝜆𝑖) is ellipsoid reflectivity; 𝐿 is the
length of absorption path; 𝛼(𝜆𝑖) is absorption coefficient of
CH4.

The radiant flux received by detector can be written as

Φ󸀠

= ∑
𝑖

𝐼0 (𝜆𝑖) 𝑒−𝛼(𝜆𝑖)𝐿0 𝑆
𝐿20

+ ∫
2𝜋

0

𝑑𝜑∫
𝜃2

𝜃1

∑
𝑖

𝐼0 (𝜆𝑖) 𝜌 (𝜆𝑖) 𝑒−𝛼(𝜆𝑖)𝐿 sin 𝜃 cos 𝜃 𝑑𝜃,

(3)

where 𝐿0 is the distance between two focuses and 𝑆 is the
reception area of detector. The transmission distance 𝐿 is a
fixed value for the radiations of different angles.

The receiving model of detector can be written as

𝑅 (𝜔) = 𝑅0cos4𝜔, (4)

where 𝑅0 is the response extent of detector. When 𝜆𝐴 and 𝜆𝐵
are adjacent, 𝑅𝐴0 = 𝑅𝐵0.

The output electric signal converted by the detector is

𝑉󸀠 = 𝑅0∑
𝑖

𝐼0 (𝜆𝑖) 𝑒−𝛼(𝜆𝑖)𝐿0 𝑆
𝐿20

+ 2𝜋∫
𝜃2

𝜃1

∑
𝑖

𝐼0 (𝜆𝑖) 𝜌 (𝜆𝑖) 𝑒−𝛼(𝜆𝑖)𝐿 sin 𝜃 cos 𝜃 𝑑𝜃

⋅ ∫
𝜔2

𝜔1

𝑅 (𝜔) 𝑑𝜔.

(5)

The output signal of detector without ellipsoid reflector is

𝑉 = 𝑅0∑
𝑖

𝐼0 (𝜆𝑖) 𝑒−𝛼(𝜆𝑖)𝐿0 𝑆
𝐿20 . (6)

𝜌(𝜆) can be seen as a constant for 𝜆.
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Let

𝐼󸀠𝐴 = ∑
𝑖

𝐼0 (𝜆𝐴𝑖) 𝑒−𝛼(𝜆𝐴𝑖)𝐿0 ,

𝐼󸀠𝐴𝑅 = ∑
𝑖

𝐼0 (𝜆𝐴𝑖) 𝑒−𝛼(𝜆𝐴𝑖)𝐿,

𝐼󸀠𝐵 = ∑
𝑖

𝐼0 (𝜆𝐵𝑖) 𝑒−𝛼(𝜆𝐵𝑖)𝐿0 .

(7)

In this design, the dual-wavelength differential absorp-
tion technology is employed. The signal wavelength 𝜆𝐴 is
1.665 𝜇m from the NIR light source of 5.1 nm PbSe QDs.
The reference wavelength 𝜆𝐵 is 1.943 𝜇m from the NIR light
source of 6.1 nmPbSeQDs.TheNIRQDs lights are controlled
in a time-sharing way.

Dividing (5) by (6), the differential signal can be obtained
as

𝑉󸀠𝐴𝐵 = 𝑉󸀠𝐴
𝑉𝐵 = 𝐼󸀠𝐴

𝐼󸀠
𝐵

+ 0.5𝜋𝜌𝐿20
𝑆

𝐼󸀠𝐴𝑅
𝐼󸀠
𝐵

[cos 2𝜃1 − cos 2𝜃2]

⋅ [3
8 (𝜔1 − 𝜔2) + 1

4 (sin 2𝜔1 − sin 2𝜔2)

+ 1
32 (sin 4𝜔1 − sin 4𝜔2)] .

(8)

However, the differential signal without ellipsoid is

𝑉𝐴𝐵 = 𝑉𝐴
𝑉𝐵 = 𝐼󸀠𝐴

𝐼󸀠
𝐵

. (9)

In (8) and (9), 𝑉𝐴 is the output corresponding to 𝜆𝐴
without ellipsoid reflector; 𝑉󸀠𝐴 is the output corresponding to𝜆𝐴 with ellipsoid reflector; 𝑉𝐵 is the output corresponding to𝜆𝐵, which is almost constant no matter whether there is an
ellipsoid reflector.

Therefore, after adding ellipsoidal structure, the gain of
the differential signal is

𝑚 = 𝑉󸀠𝐴𝐵 − 𝑉𝐴𝐵
𝑉𝐴𝐵 = 0.5𝜋𝜌𝐿20

𝑆
𝐼󸀠𝐴𝑅
𝐼󸀠
𝐴

[cos 2𝜃1 − cos 2𝜃2]

⋅ [3
8 (𝜔1 − 𝜔2) + 1

4 (sin 2𝜔1 − sin 2𝜔2)

+ 1
32 (sin 4𝜔1 − sin 4𝜔2)] ,

(10)

where Δ𝐿 = 𝐿 − 𝐿0, representing the difference between
reflected optical path through ellipsoid and direct incident
optical path on the detector.

3. Experiment and Analysis

The absorption spectra and PL spectra of the NIR QDs light
sources fabricated with 5.1 nm and 6.1 nm PbSe QDs are
shown in Figures 2 and 3, respectively. The wavelength of
1.66 𝜇m is the central wavelength for CH4 detection in the
experiment.The near infrared absorption spectrum is shown
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Figure 2: Absorption and PL spectra of 5.1 nm PbSe QDs.
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Figure 3: Absorption and PL spectra of 6.1 nm PbSe QDs.

in Figure 4, which is from HITRAN atmospheric molecular
spectroscopy database [36, 37].

As seen in Figures 2 and 4, the PL peak of 5.1 nm
PbSe QDs is 1665 nm with a full width at half-maximum
of 143 nm, which covered the entire absorption spectrum of
CH4 gas. Carbon dioxide gas, carbon monoxide gas, and
water steam are the interference gases in the experiment,
whose absorption spectra are shown in Figures 5 and 6.
As seen in Figure 5, the absorption coefficients of CO gas
and CO2 gas are small, so the interference influence can be
ignored. It can be seen from Figure 6 that the overlap region
between the absorption spectrum of H2O gas and the PL
spectrum of PbSe QDs is very small, so the interference effect
of water vapor can be considered very small. So, the NIRQDs
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Figure 4: Absorption spectra of CH4 near infrared.
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Figure 5: Absorption spectra of CO and CO2 near infrared.

light sources fabricated with 5.1 nm can be used to detect the
concentration of CH4 gas.

Figure 3 indicates the PL peak of 6.1 nm PbSe QDs is
located on 1943 nm with a full width at half-maximum of
185 nm. As seen in Figures 2 and 3, the two wavelengths are
adjacent.

3.1. Differential Signal Gains. Refer to [30, 32]; in the simu-
lation computation, the related parameters are set as follows:
𝑥 = 0.36 cm, 𝜌 = 0.95, 𝑆 = 2mm × 2mm, and 𝐶 = 100 ppm,
where 𝑥 is the open length of ellipsoid reflector, 𝜌 is the
reflectivity of ellipsoid reflector, 𝑆 is the effective reception
area of detector, and 𝐶 is the concentration of the CH4 gas.
In the ideal case, the different emulational curves of 𝑎 and 𝑚
with the increase of the semifocus 𝑐 are shown in Figure 7.

As seen in Figure 7, the gain of signal relies on 𝑎 and 𝑐.
When 𝑐 is fixed, there is only one value of 𝑎 corresponding
to the maximum of gain. With the increase of 𝑎, 𝑚 gradually
increases up to maximum and then decreases. It is necessary
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Figure 6: Normalized absorption spectra of PbSe QDs and absorp-
tion spectra of H2O near infrared.
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Figure 7: Emulational curves of 𝑎 and 𝑚.

to set a reasonable value for 𝑎 and 𝑐 of the ellipsoid reflector
to get a suitable signal gain. In Figure 7, when we choose 𝑐 =
1.99 cm, 𝑎 = 2.092 cm, and 𝑥 = 0.36 cm, the signal gain is
approximately 593, which is enough to receive a strong signal.

3.2. Surface Curvature Error. Surface curvature of the ellip-
soid reflector has manufacture error. We choose 𝑐 = 1.99 cm
and 𝑥 = 0.36 cm; the emulational curve of 𝑎 and 𝑚 with the
fixed manufacture error 𝜁 = 1∘ is shown in Figure 8.

As shown in Figure 8, when the manufacture error exists,
the gain of the differential signal 𝑚 will be greatly reduced.
The maximum decreases from the original 593 to 80 times.
This is mainly because that manufacture error will result in
the reduction of 𝜃1 and 𝜃2. Further, the reflected lights will
not be received by the detector and the reflector surface of
ellipsoid cannot be used entirely.
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Figure 9: Emulational curve of 𝑥 and 𝑚.

The output power depends on the differential signal gain
𝑚. The noisy power of the system is fixed; therefore, the
improvement of the signal-to-noise ratio is

Δ (SNR)𝑅 = SNR󸀠 − SNR
SNR

= 𝑃󸀠𝐴𝐵 − 𝑃𝐴𝐵
𝑃𝐴𝐵 (11)

and 𝑃󸀠𝐴𝐵 ∝ 𝑉󸀠2𝐴𝐵, 𝑃𝐴𝐵 ∝ 𝑉2𝐴𝐵; therefore, ΔSNR ∝ 𝑚2. In the
system, 𝑚 ∝ 101, so the SNR was improved 102.

3.3. Open Length. As shown in (10), the open length of the
ellipsoid reflector 𝑥 will lead to some changes of 𝜃 and 𝜔,
which will bring some impacts on the signal gain 𝑚. After
𝑎 and 𝑐 are fixed, we simulate the relationship between gain
𝑚 and 𝑥 in Figure 9, where 𝑐 = 1.99 cm and 𝑎 = 2.092 cm.

As seen in Figure 9, when 𝑎 and 𝑐 are fixed, the gain of the
differential signal𝑚 ismonotonous index decreasingwith the
increasing of 𝑥.

4. Conclusion

In this paper, the NIR light sources fabricated with PbSe
QDs and a new gas cell structure using an ellipsoid reflector
were designed to test the concentration of CH4. Based on
the double wavelengths differential detection method, the
math model of the ellipsoid reflector is established. And the
relationship between the parameters of the reflector and the
light intensity of the detector is described. It can be proved
that the structure can enhance the intensity of the output
signal. In simulation, based on the chosen parameters, the dif-
ferential gain signal could be enhanced 80 times and the SNR
could be improved 102. In conclusion, the ellipsoid reflector
structure will be convenient for the signal amplifying, AD
converting, and other process in the latter circuits, which can
be used to improve the detection sensitivity and precision in
gas detection system.
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