Supplementary Materials

In situ polymerization of nylon 66/reduced graphene oxide nanocomposites

Xiaochao Duan^{a b}, Bin Yu^{a b}, Tonghui Yang^{a,b}, Yanpeng Wu^{a,b}, Hao Yu^{a b}*, Tao Huang^{a b}*

^a State Key Lab for Modification of Chemical Fibers & Polymer Materials, Shanghai, China

^b College of Material Science & Engineering, Donghua University, Shanghai, China

No.2999 North Renmin Road, Songjiang District, Shanghai, P. R. China, 201620.

*Corresponding author. Tel.: +86-21-67792853.

E-mail: <u>yh@dhu.edu.cn</u>. (Hao Yu), ht@dhu.edu.cn (Tao Huang)

Fig. S1. EDS of The SEM photographs of GO(A) and f-rGO-1(B).

Fig. S1 displayed the EDS measurement of the SEM photographs, this results showed that the C:O ratio of f-rGO-1rises to 17.29 compared with 1.65 for the native GO, confirming a high level of GO reduction, which was accordance with the TGA measurement (Fig.5).

Fable S1 Raman data contain	ning I _D /I _G peak	ratios of graphene
------------------------------------	--	--------------------

Sample	GO	f-rGO-0.25	f-rGO-0.5	f-rGO-0.75	f-rGO-1
I _D /I _G Ratio	1.22	1.17	1.21	1.25	1.29

The I_D/I_G peak ratios of graphene were calculated by means of Raman-peakdifferentation-imitating and integrated that peaks through Origin software.

Table S2 Degree of crystallinity of PA66 and PA-rGO samples from XRD data**through Jade software.**

Sample	PA66	PA-rGO-0.25	PA-rGO-0.5	PA-rGO-0.75	PA-rGO-1
Crystallinity (%)	22.8	27.4	31.5	35.4	27.2