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Tungsten oxide sol, containing highly crystalline nanoparticles of orthorhombicWO3 and having good sedimentation stability, was
synthesized using a facile, ultrasonic-assisted technique. An additional steric stabilizer, dextran, was proposed to enhance the
stability of WO3 nanoparticles in biological media and to reduce their in vivo toxicity. The cytotoxicity of dextran-stabilized and
nonstabilized WO3 sols was studied in vitro using dental pulp stem (DPS) cell lines and breast cancer (MCF-7) cell lines. Both
tungsten oxide sols demonstrated low cytotoxicity and low genotoxicity for both stem cells and malignant cells and only slightly
reduced their metabolic activity in the concentration range studied (from 0.2 to 200μg/ml). The data obtained support possible
theranostic applications of tungsten oxide colloidal solutions.

1. Introduction

Tungsten trioxide (or tungsten(VI) oxide. WO3 is a semicon-
ductor material with a bandgap width of 2.5–2.8 eV that cor-
responds to the visible spectrum range. WO3 nanoparticles
and nanocrystalline thin films have a wide range of applica-
tions in microelectronics and optoelectronics [1], in smart
windows [2, 3], in dye-sensitized solar cell engineering [4],
in gas-sensing devices [5–7], in quantum dot-based light-
emitting diodes [8], in catalysis [9, 10], in photocatalysis
[10–12], and in photoelectrocatalysis [13], including water
splitting [14–16], wastewater purification [17], and disinfec-
tion [18–22].

Recently, tungsten oxide has attracted a great deal of
attention due to its promising biomedical applications
[23–25]. WO3 nanoparticles strongly enhance the visibility

of tissue structures in X-ray-based imaging techniques,
namely, computed tomography (CT). The X-ray absorption
coefficient of tungsten (4.438 cm2/kg at 100 keV) is much
higher than that of convenient CT contrast agent iodine
(1.94 cm2/kg at 100 keV) [26]. Tungsten oxide nanoparticles
possessing photocatalytic properties [22, 27, 28] have been
applied in photothermal [22, 26, 29, 30] and photodynamic
[22, 30–32] therapies. Tungsten oxide nanoparticles act as a
radiation dose-intensifying agent during radiation therapy
[32] and can be used as a theranostic agent for simultaneous
tumour CT imaging and therapy (trimodal action: photo-
thermal, photodynamic, and radiation [32]). The safety and
hazard data on WO3 is available at PubChem [33].

In cancer theranostic applications, photoactive semicon-
ductor nanoparticles should possess two equally important
properties: minimum toxicity in the dark (for normal cells)
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and maximum activity upon irradiation (for tumour cells).
Both of these requirements can partially be satisfied by
means of varying the particles’ surface state and habitus
during synthesis.

The habitus of tungsten oxide nanostructures can easily
be adjusted to the application requirements. In this way, 0D
(dots), 1D (rods, whiskers, and fibres), 2D (plates, films), or
3D (large particles, blocks) WO3 materials can be synthe-
sized. Various types of nanostructured tungsten oxide have
been reported, from simple, spherical nanoparticles [34] to
WO3-based aerogel networks [35], quantum dots [36–39],
nanostructured films [40] (including nanoplate films [41],
nanorod films [42], honeycomb-structured films [43], and
mesoporous films [44]), nanobelts [45], nanofibres [46],
nanowires [30, 46, 47], bundle-like nanowires [30, 48], nano-
networks [49], hollow spheres [50], macroporous spheres
[51], wedge-like architectures [52], nanorods [53, 54], nano-
cuboids [34], square nanoplates [55], nanosheets [56], nano-
leaves [57], and urchin-like [30, 58], flower-like [59–61], and
tree-like nanostructures [62, 63], etc.

Several sophisticated approaches have been developed
for the synthesis of WO3 nanostructures using vapour-, liq-
uid-, and solid-phase (both “wet” and “dry”) methods [19].
The vapour-phase route can be realized via laser ablation
[64], electron beam irradiation [65], ion bombardment
[66], or heat treatment [67] of tungsten-based materials;
these techniques are used primarily for the production of
nanostructured films and include such processes as sputter-
ing [68] and thermal evaporation (including hot-wire [69,
70] and arc discharge vaporization [71] and spray pyrolysis
[72–74]). The key liquid-phase approaches for the synthesis
of WO3 nanoparticles include precipitation with acids [75],
hydro- or solvothermal treatment (using aqueous [76–78],
nonaqueous [20, 79], or mixed [80] solvents), sol-gel pro-
cessing (both in aqueous [81, 82] and in nonaqueous [83]
systems), reverse microemulsion-mediated routes [84–87],
and soft [21, 88] and hard [89] templating (including elec-
trodeposition [90]). Solid-phase methods are based mainly
on two approaches: tribochemical [91] and thermal [92]
decompositions; the latter allows the production of a pure,
surfactant-free, well-crystallized material without harmful
impurities. For example, ammonium meta- and paratung-
state are readily decomposed under heating, to form tung-
sten trioxide [93–102].

It is a well-known fact that the photoactive properties of
WO3 nanoparticles depend strongly on the crystallinity of
this material: the increase in the crystallite size enhances
the photodecomposition rate of organic materials [103]
and, similarly, the photocytotoxicity of the nanoparticles
[28]. On the other hand, an increase in crystallinity and a
decrease in the hydration degree of the tungsten oxide sur-
face (e.g., upon solvent-free synthesis of WO3 nanoparticles)
should be accompanied by a decrease in their solubility and
toxicity, since the cytotoxicity of WO3 nanoparticles (includ-
ing genotoxic effects such as DNA damage and micronuclei)
is supposedly caused by free tungsten ions [104], which could
induce oxidative stress and inflammation. In this paper, we
have tried to clarify these controversial issues by analyzing
the cytotoxicity of the original surfactant-free aqueous WO3

sol, prepared by solid-state thermal decomposition of ammo-
nium paratungstate, followed by ultrasonic dispersion of the
resulting product in water. This sol contains highly crystal-
line orthorhombic tungsten oxide nanoparticles, which are
expected to have low ionic solubility and toxicity and high
photoactivity under irradiation. To increase the in vivo stabil-
ity of the sol, it was additionally modified by the nontoxic
stabilizer, dextran. Thus, the paper was aimed at the compar-
ative study of the dark cytotoxicity and metabolic activity of
normal stem cells and malignant cells in the presence of sta-
bilized and nonstabilized sols of highly crystalline WO3. For
the toxicity studies, we have chosen highly crystalline single-
phase WO3 to exclude any other factors which may affect the
toxicity of nanoparticles.

2. Materials and Methods

2.1. WO3 Nanoparticles’ Synthesis and Characterization.
WO3 aqueous sols were prepared using a recently reported
protocol [102]. Briefly, 3 g of ammonium paratungstate
(high-purity grade) powder was introduced, for 10min, into
a muffle furnace preheated to 600°С, in air. Thus, the
obtained WO3 powder was quenched in air, cooled and
mixed with 200mL of distilled water, and ultrasonicated in
an ultrasonic bath for 6 hours to obtain a whitish yellow tur-
bid sol. The sol was allowed to settle for an additional 3 hours
and was divided into 2 portions. To one of the portions, dex-
tran powder (high-purity grade, Sigma #31388, 0.162 g) was
added and allowed to dissolve under stirring. The concentra-
tion of the stock sols as estimated using gravimetric analysis
was 2 g/L. Powder X-ray diffraction (XRD) analysis was car-
ried out using a Bruker D8 Advance diffractometer (CuKα-
radiation). The scanning electron microscopy (SEM) images
were obtained on a Carl Zeiss NVision 40 electron micro-
scope at an accelerating voltage of 1 kV. Before XRD and
SEM measurements, the sols were dried in air at 50°C over-
night. Time-resolved dynamic light scattering (DLS) mea-
surements of WO3 suspensions’ aggregation behaviour were
performed using a Photocor Complex analyzer equipped
with a helium-neon laser (λem = 632 8 nm). All DLS mea-
surements were conducted at a scattering angle of 90°.

2.2. Cell Culture. Two types of cells were used in the experi-
ments: dental pulp stem (DPS) cells and the breast cancer cell
line MCF-7. It should be noted that recent studies have
shown a great deal of interest in stem cells for the delivery
of antitumour drugs [105–108]. DPS cells were isolated from
the third molar germ extracted for orthodontic indications
from a healthy, 16-year-old patient. The MCF-7 breast can-
cer cell line was obtained from the cell bank of the Institute
of Cell Biophysics of the Russian Academy of Sciences. The
cells were extracted with DMEM (PanEko, Russia) contain-
ing 200U/mL penicillin and 200μg/mL streptomycin (Life
Technologies, USA), with a syringe inserted into the dental
apex and further treated with 0.25% trypsin and 0.02%
EDTA (Life Technologies, USA) for 30min at 37°C. The iso-
lated cells were centrifuged for 2min at 1500 rpm and resus-
pended to a single cell state in a culture medium consisting of
DMEM/F-12 (1 : 1; Life Technologies), with the addition of
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10% fetal calf serum (FCS). The obtained solution was trans-
ferred into 25mL vials and cultured in a 5% CO2 atmosphere
at 37°C with the addition of 10% FCS (HyClone), 100U/mL
penicillin/streptomycin, and 2mM L-glutamine in DMEM
(PanEko, Russia). When the subconfluent cell state was
achieved, the cultured cells were treated with 0.25% EDTA-
trypsin solution and passaged in 75 cm2 vials in a ratio of
1 : 3. Cells were cultured in DMEM/F-12 (PanEko, Russia),
with the addition of 10% FCS, 100U/mL penicillin/strepto-
mycin, and 2mM L-glutamine.

2.3. MTT Assay. The determination of mitochondrial and
cytoplasmic dehydrogenases activity in living cells was car-
ried out using a MTT assay based on the reduction of the col-
ourless tetrazolium salt (3-[4,5-dimethylthiazol-2-yl]-2,5-
diphenyltetrazolium bromide (MTT)). After 24 hours of cell
incubation with different concentrations of WO3 nanoparti-
cles, 0.5mg/mL of the MTT reagent was introduced into
the wells by replacing the culture media, followed by a stan-
dard MTT assay.

2.4. Live/Dead Assay. Assessment of the viability of the cells
cultured in the presence of WO3 nanoparticles was per-
formed on a Carl Zeiss Axiovert 200 microscope. An L-
7007 LIVE/DEAD BacLight Bacterial Viability Kit (Invitro-
gen) was used for the assay, which included a SYTO 9 fluo-
rescent dye (absorption 420 nm, emission 580nm) and a
propidium iodide (PI) dye (absorption 488 nm, emission
640nm). The dyes were added to the medium (1μg/mL),
and the plate was placed in a CO2 incubator for 15min.
Microphotographs were taken after washing the cells with a
phosphate-buffered saline.

2.5. Mitochondrial Potential. Mitochondrial membrane
potential (MMP) was determined by JC-1 dye, using fluores-
cence microscopy according to the standard procedure [109].
JC-1 accumulates in the mitochondrial membrane in a
potential-dependent manner. The high potential of the inner
mitochondrial membrane facilitates the formation of the dye
aggregates (J-aggregates) with both excitation and emission
shifted towards red light (530 nm/590 nm) when compared
with that for JC-1 monomers (485 nm/538 nm) [109]. Cells
were seeded into 96-well tissue culture plates (Greiner) at a
density of 5·104 cells/well in 100μL culture medium and cul-
tured in a CO2 incubator at 37

°C for 24, 48, and 72 hours.
The cells were preincubated with 5μM JC-1 in the HBSS in
a CO2 incubator at 37°C for 30min. Next, the cells were
washed twice using HBSS and analyzed using a 200M Zeiss
inverted fluorescence microscope (Zeiss, Germany) at 200x
magnification. Results are shown as a ratio of fluorescence,
measured at 530nm/590nm (aggregates) to that measured
at 485nm/538nm (monomers).

2.6. Fluorescent Staining of Cell Nuclei with Hoechst 33342
Dye. Cells were cultured in 96-well plates, as described above.
After 24, 48, and 72 hours of culturing with WO3 nanopar-
ticles, the cells were washed with HBSS, prior to 20min
staining with Hoechst 33342 (1mg/mL). Images of stained
cells were captured by fluorescence microscopy, and the

percentage of apoptosis was calculated by counting (there
were >600 cells per group).

2.7. Statistical Analysis. The experiments were carried out in
3-4 replicates, and analytical determinations for each sample
were performed in duplicate. The results of the experiments
were compared with the control experiment. Methods of var-
iation statistics were applied to estimate the reliability of the
results. To assess the statistical significance, the Mann-
Whitney U test was used (p ≤ 0 05). The obtained data were
processed using Microsoft Excel 2007 software.

3. Results and Discussion

WO3 sols, both nonstabilized and stabilized by dextran, dem-
onstrated very good sedimentation stability. After 7 days of
storage, the volume fraction of clear liquor did not exceed
7% (Table S1, Supplementary Information). According to
X-ray powder diffraction data (Figure 1(a)), the sols obtained
were composed of highly crystalline orthorhombic tungsten
trioxide (β-WO3) with a particle size of 65 ± 2 nm, as
calculated using a full-profile analysis of X-ray diffraction
patterns. SEM images (Figure 1(b)) were in good agreement
with the XRD data and showed that ultrasonication resulted
in complete disintegration of WO3 aggregates with the
formation of free-standing particles.

The results of the DLS study show that the hydrodynamic
diameter of nonstabilized particles was about 54 nm (radius
27 nm); for dextran-stabilized nanoparticles, this value was
doubled (Figure 2).

For the cytotoxicity analysis of WO3 nanoparticles, two
types of human cell cultures were selected: normal (stem),
isolated from the pulp of a healthy donor’s tooth, and trans-
formed, isolated from a breast tumour. This choice was made
taking into account their different metabolic activity, mor-
phology, and proliferative activity. From the results of the
MTT test, it is clearly seen that MCF-7 cells (Figure 3(a)) pro-
liferated much faster than DPS cells (Figure 3(b)). The anal-
ysis of the metabolic activity of MCF-7 and DPS cells using
the MTT test after incubation with WO3 nanoparticles, at
all the concentrations tested (0.2–200μg/mL), did not reveal
any significant difference with the control group for both
types of cell culture. The differential analysis of the ratio of
live/dead cells (Figure 4) after incubation with WO3 nano-
particles also did not reveal significant differences with the
control group. Morphological features of DPS cells after
incubation with WO3 nanoparticles remained unchanged;
cells retained the characteristics of fibroblast-like cell cul-
tures, including effective adhesion, spreading, and migration
by the leading edge scheme. MCF-7 cells also retained their
original morphology and activity after incubation with WO3
nanoparticles, which additionally confirmed the absence of
a toxic effect.

Oxidative stress is the major mechanism of the cytotoxic
action for the metal-based nanomaterials [110]. The develop-
ment of oxidative stress can be associated with a disturbance
in the mitochondrial metabolism, which leads to an increase
of the intracellular ROS level [111]. It is also well known that
nanocrystalline tungsten is capable of generating ROS in
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Figure 1: The SEM image (a) and X-ray diffraction pattern (b) of WO3 nanoparticles.
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Figure 2: The sedimentation stability (a) and particle size distribution (b) of dextran-stabilized and nonstabilized WO3 sols. A possible
scheme for doubling the particle size by dextran chains (c).
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biological media via the Haber-Weiss reaction [112]. In this
regard, we studied the mitochondrial membrane potential
(MMP) after the incubation of the cells with WO3 nanopar-
ticles (Figure 5). The quantitative analysis of micrographs
revealed a slight decrease of MMP in a dose-dependent man-
ner. This decrease suggests that WO3 nanoparticles still had a
certain effect on the cell metabolism, but did not cause cell
death, according to the LIVE/DEAD assay.

Next, we performed a morphological analysis of the cell
nuclei upon incubation with WO3 nanoparticles, to detect
possible signs of genotoxicity (Figure 6). No visible changes
in the nuclear apparatus were observed in either normal or
malignant cells in the whole WO3 nanoparticle concentra-
tion range. Nevertheless, a more detailed study should be
performed to confirm the absence of genotoxicity (for exam-
ple, comet assay).

Thus, it can be concluded thatWO3 nanoparticles did not
exert short-term (after 24 hours) toxic effects in MCF-7 and
DPS cells, although it is worth noting that only the short-
term effects of WO3 nanoparticles on human cells were
investigated, while the long-term effects of WO3 nanoparticle
exposure are still to be studied, including long-term cyto-,
geno-, and embryotoxicity studies.

4. Discussion

As a rule, tungsten oxide nanoparticles demonstrate low
cytotoxicity and are relatively safe in vitro in the concentra-
tion range of up to 1000μgmL–1. For example, WO3 nano-
particles prepared by the electrical arc discharge method in
deionized water [113] and coated by cross-linked chitosan
demonstrated no significant cytotoxicity at concentrations
up to 5000μg/mL after 24 hours of incubation. Similarly,
PEG-poly-ε-caprolactone encapsulated tungsten oxide nano-
particles (average diameter 108nm, hydrodynamic diameter
152nm) were synthesized by thermal decomposition of a
tungsten precursor (WCl6) in a polar nonaqueous solvent
(diethylene glycol) and modified using a block copolymer
[114]. The MTT cytotoxicity assay on HeLa cells

demonstrated that obtained nanoparticles exerted a negligi-
ble cytotoxic effect within the concentration range of 0.1–
5000μg/mL after 24 h incubation. The same protocol was
used for the synthesis of polyacrylic acid-capped tungsten
oxide nanoparticles, which also exerted a negligible cytotoxic
effect on the A549 human alveolar basal epithelial cell line
within the concentration range of 50-1000μg/mL after 24
hours of incubation [115]. Two-dimensional WO3 nanopla-
telets with sizes ranging from 30 to 100nm and a thickness
of around 5–10nm were synthesized by thermal decompo-
sition of WCl6 in a nonpolar solvent, and coated with a
poly-ε-caprolactone layer [116]. The cytotoxicity assays on
the HeLa cell line demonstrated a LD50 value of about
0.01M (about 2300μgmL–1) and the absence of toxicity
for concentrations up to 0.001M (about 230μg/mL). Toxic-
ity profiles of uncoated and coated nanoparticles in vitro
were very similar, indicating that the polymer did not affect
the intrinsic cytotoxicity of WO3. On the contrary, suspen-
sions of uncoated particles were shown to be extremely
toxic in vivo, leading to mouse death within a few seconds.
Chinde et al. studied the toxicity mechanisms of different
concentrations (0–300μg/mL) of WO3 nano- and micro-
particles in human lung carcinoma (A549) cells [117].
The microparticles were nontoxic in the entire range of
concentrations studied, while the nanoparticles were non-
toxic in the concentration range of up to 100μg/mL only.
The WO3 concentration of 200 and 300μg/mL, after 24 h
of exposure, led to a significant increase in the percentage
of tail DNA, micronucleus formation, and intrinsic apopto-
tic cell death. Zhou et al. synthesized tungsten oxide nano-
rods with a length of 13 1 ± 3 6 nm and a diameter of
4 4 ± 1 5 nm by a facile thermal decomposition, then mod-
ified them with methoxypoly (ethylene glycol) (PEG) car-
boxyl acid via ligand exchange [118]. According to the
MTT cell viability assay (human epithelial cervical cancer
cell line HeLa and normal mouse fibroblast cell line
L929), these nanoparticles had no cytotoxicity in the dark
(without irradiation) in the concentration range up to
125μg/mL after 4 h incubation. Here, we demonstrated that
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Figure 3:МТТ assay after 24 hours of incubation with WO3 nanoparticles. (a) MCF-7 cell line and (b) DPS cells. Data are presented as the
mean ± sd (yEr±); n = 3. Cells were plated in 96-well plates and left overnight. Then, WO3 nanoparticles (0.2–200 μg/mL) were added, and
after 24 hours, a standard MTT test was performed.

5Journal of Nanomaterials



our novel, facile, and scalable approach to the synthesis of
nanocrystalline WO3 allows for the preparation of stable
WO3 sols containing highly crystalline nanoparticles, which
ensures their low cytotoxicity and gives them a prospect for
biomedical applications.

Actually, the stability of WO3 sols is a key prerequisite
for their biomedical application, since, generally, due to
the high density of tungsten oxide (7.16 g/cm3), WO3 nano-
particles precipitate readily. The intermolecular forces of
attraction (e.g., those of van der Waals) cause nanoparticle

agglomeration/aggregation [119] and sol coagulation/sedi-
mentation [120]. The stability of colloidal solutions depends
on the repulsion between nanoparticles; there are two main
mechanisms of such repulsion: electrostatic and steric [121,
122]. The former is the result of electrical double layer for-
mation around the nanoparticles due to charge separation.
When two nanoparticles approach each other, overlapping
their double layers, strong repulsion occurs [123]. This
mechanism is dominant in weak electrolytes; the thickness
of the double layer drastically decreases at higher ionic

Non-stabilized WO3 Dextran-stabilized WO3

MCF-7 DPS MCF-7 DPS

Control

0.2
μg/ml

2
μg/ml

20
μg/ml

200
μg/ml

Figure 4: Microphotographs of DPS and MCF-7 cells after 24 hours of incubation with WO3 nanoparticles (0.2–200 μg/mL). Cells were
plated in 96-well plates and left overnight. Then, WO3 nanoparticles (0.2–200 μg/mL) were added, and after 24 hours, cells were stained
with an L-7007 LIVE/DEAD kit.
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Figure 5: The effect ofWO3 NPs on themitochondrial membrane potential (MMP) in DPS andMCF-7 cells after 24 hours of incubation with
WO3 nanoparticles (0.2–200μg/mL). Cells were plated in 96-well plates and left overnight. Then, WO3 nanoparticles (0.2–200 μg/mL) were
added, and after 24 hours, cells were stained with JC-1 dye.
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concentration, nanoparticles approach much closer, and
attraction takes place. Since the biological fluids are strong
electrolytes, containing many components, this can cause
instability of sols and aggregation of particles [124]. This is
why the second, steric mechanism of stabilization should
preferably be used for biomedical colloidal system engineer-
ing [125, 126]. Here, repulsion is attained by adsorbed big
organic molecules (uncharged nonionic surfactants or poly-
mers), forming the protective layer on the surface of nano-
particles, preventing their collision due to the energetically
unfavourable interaction of hydrated chains (when the

steric stabilizer has good hydrophilicity) [127]. A similar
approach was used by Zhou et al. [26] to modify WOx
nanoparticles with methoxypoly (ethylene glycol) carboxyl
acid to provide their good water dispersability and
biocompatibility.

Generally, in diluted electrolytes, there are no differences
in the properties of sols stabilized via the two mechanisms,
but their behaviour drastically changes in biological media
[128–132]. It is a well-known fact that WO3 nanoparticles
having no steric stabilizers (electrostatic stabilization only)
are very toxic in vivo, probably due to the particles’

Non-stabilized WO3 Dextran-stabilized WO3

MCF-7 DPS MCF-7 DPS

Control

0.2
μg/ml 

2
μg/ml 

20
μg/ml

200
μg/ml

Figure 6: The effect of WO3 nanoparticles on the nucleic morphology of DPS and MCF-7 cells. Cells were incubated with WO3 NPs
(0.2–200 μg/mL) and, after 24 hours, were stained with Hoechst 33342 dye to detect apoptotic morphology.

8 Journal of Nanomaterials



aggregation in blood vessels and capillaries [116]. Thus,
despite the fact that the stabilizer (dextran) has little effect
on the toxicity of tungsten oxide nanoparticles in vitro,
dextran-stabilized sol is more promising for further in vivo
applications, for example, in X-ray imaging.

5. Conclusions

Highly crystalline orthorhombic tungsten oxide nanoparti-
cles were synthesized by ammonium paratungstate thermal
decomposition, and a very stable aqueous sol was prepared
by their ultrasonication. WO3 nanoparticles were shown to
be nontoxic for DPS stem cells and MCF-7 breast cancer
cells; they did not cause cell death in the concentration range
studied (from 0.2 to 200 μg/mL) and only slightly reduced
the metabolic activity of the cells. A nontoxic steric stabilizer
(dextran) was proposed for further in vivo administration of
WO3 nanoparticles. The low toxicity of dextran-stabilized
WO3 sol to normal (stem) and malignant cells makes this
preparation a possible candidate for biomedical applications
including X-ray imaging.
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