

# Research Article

# Effects of Single Doping and Composite Doping of Yttrium and Antimony on the Structural, Thermodynamic, Mechanical, and Electronic Properties of Mg<sub>2</sub>Si by First Principles

Zhonghao Zhou<sup>[b]</sup>,<sup>1</sup> Zhen Zhao<sup>[b]</sup>,<sup>2</sup> and Zhi Li<sup>3</sup>

<sup>1</sup>Department of Chemistry, Renmin University of China, Beijing 100872, China <sup>2</sup>School of Chemistry and Life Science, Anshan Normal University, Anshan 114007, China <sup>3</sup>School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China

Correspondence should be addressed to Zhen Zhao; zhaozhenlunwen@yeah.net

Received 28 May 2018; Accepted 15 October 2018; Published 10 March 2019

Academic Editor: Stefano Bellucci

Copyright © 2019 Zhonghao Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The structural, stability, thermodynamic, mechanical, and electronic properties of Y and Sb doped into  $Mg_2Si$  were studied by first principles. The results show that the stable structures are  $Mg_7Si_4Y$ ,  $Mg_8Si_4Sb$ ,  $Mg_6Si_4YSb$ , and  $Mg_7Si_4YSb$ .  $Mg_8Si_4Sb$  has the largest ductility among them. Y doping causes strong orbital hybridization between Mg (2p) and Y (4d), while Sb doping causes strong orbital hybridization between Mg (2p), Si (3p), and Sb (5p). However, the thermal conductivity and hardness of  $Mg_2Si$  will be reduced by Y and Sb doping. The conductivity of  $Mg_8Si_4Sb$  is the best. The anisotropy of the {100}, {010}, and {001} surfaces will increase once doped with Y or Sb.  $Mg_8Si_4Sb$  has the highest degree of anisotropy.

# 1. Introduction

The 6xxx series aluminum alloy is widely used in automobile manufacturing because of its excellent qualities, such as reduced weight and good corrosion resistance [1, 2]. Mg<sub>2</sub>Si is the main strengthening phase [3] of the 6xxx series Al alloy, and it possesses a low density and high melting point and impedes grain boundary sliding [4-9]. However, the application of the 6xxx series Al alloy is limited due to its brittleness. This is due to the Mg<sub>2</sub>Si phase which is the preferred phase to form coarse Chinese script or dendritic morphology [10-12]. To improve the mechanical properties of Mg<sub>2</sub>Si, many alloying elements (such as Bi, As, and Sn [13-20]) are doped. Recently, Y and Sb doping into the Mg<sub>2</sub>Si phase was considered. Zhang and Zhang [21] found that the fine modification effect of Y on the primary Mg<sub>2</sub>Si phase is better than that of an equal amount of mixed light rare earth, and it can greatly refine the Mg<sub>2</sub>Si grains and improve the tensile strength and elongation. Emamy et al. [22] found that the addition of Y increases both the hardness and ultimate tensile strength values of the Al-15%Mg<sub>2</sub>Si cast composite. Jiang et al. [23] systematically investigated the modification of in situ-formed Mg<sub>2</sub>Si in Mg-Si alloys with yttrium (Y). Ioannou et al. [24] have prepared Sb-doped Mg<sub>2</sub>Si compounds through ball milling and a solid-state reaction. Hu et al. [25] found that Sb doping can change the type of Chinese script of Mg<sub>2</sub>Si to a fine polygonal shape and decrease the grain sizes. Tani and Kido [26] studied the formation energy and atomic structure of impurities in Mg<sub>2</sub>Sn using first-principles plane-wave total energy calculations. The thermoelectric properties of trace Y-doped Mg<sub>2</sub>Si crystals have been obtained by experiments, and the total energies of Mg<sub>7</sub>Si<sub>4</sub>Y, Mg<sub>8</sub>Si<sub>3</sub>Y, and Mg<sub>8</sub>Si<sub>4</sub>Y crystals have also been calculated [27]. What are the differences between the single doping and composite doping of Y and Sb? What are the micromechanisms of Y and Sb doping into Mg<sub>2</sub>Si? At present, there is no theoretical research on the brittleness of Mg<sub>2</sub>Si by Y and Sb codoping as far as we know.

In this work, the structural, thermodynamic, and mechanical properties of Y and Sb doped into  $Mg_2Si$  were studied by first principles. It will provide a theoretical

reference for further research on Mg<sub>2</sub>Si and 6xxx series aluminum alloys.

1.1. Computational Models and Methods.  $Mg_2Si$  has an antifluorite (CaF<sub>2</sub>) structure [28] (see Figure 1). The atomic coordinates are as follows: Mg (0.25, 0.25, 0.25) and Si (0, 0, 0).

For Y and Sb single doping, the positions of the Mg (or Si) atoms are replaced by Y or Sb, respectively. Despite that both the atom sizes of Y and Sb are larger than those of Mg and Si atoms, to avoid omitting certain configurations, the interpolation Y or Sb atoms into the interval of Mg and Si was considered (see Figure 2).

For the composite doping of Y and Sb, the Mg and (or) Si atoms are replaced by Y and Sb, respectively. Y or Sb enters into the interstitial space of the Mg<sub>2</sub>Si cell, and Sb or Y replaces the Mg and (or) Si atoms (see Figure 3).

The hypothetical structures of Y- and Sb doping or codoping Mg<sub>2</sub>Si configurations must be optimized. The calculations were performed using the CASTEP package based on the density functional theory (DFT) [29]. The exchange-correlation energy functional was adopted by Perdew, Burke, and Ernzerhof (PBE) from the generalized gradient approximation (GGA) [30]. The plane-wave cutoff energy was set to 340 eV. The Brillouin zone was sampled using a Monkhorst-Pack k-point mesh as follows: 4×3×4 for (j) Mg<sub>8</sub>Si<sub>2</sub>YSb, (l) Mg<sub>8</sub>Si<sub>3</sub>YSb, and (m) Mg<sub>8</sub>Si<sub>4</sub>YSb and the rest are  $4 \times 4 \times 4$ . To find the lowest energy structures of Y- and Sb-doped Mg<sub>2</sub>Si phases, we observe the following convergence thresholds for geometry optimization: total energy convergence tolerance  $1.0 \times 10^{-5}$  eV/atom steps, 0.03 eV/Å for maximum force, 0.05 GPa for maximum stress components, and  $1 \times 10^{-3}$  Å for maximum displacement. After the optimization, the electronic properties are calculated. The density of states (DOS) is computed by means of a scheme developed by Ackland, while the DOS calculation is based on a Mülliken population analysis with the relative contribution of each atom.

#### 2. Results and Discussion

2.1. Structures. The optimized lattice parameters of the pure  $Mg_2Si$  phase and Y- and Sb-doped  $Mg_2Si$  phases are shown in Table 1. It can be seen that the lattice parameters of  $Mg_2Si$  are in agreement with the experimental values [31–33]. Y- and Sb-doped  $Mg_2Si$  phases have larger lattice parameters and larger volume than the pure  $Mg_2Si$  phase. It is due to the lattice distortion of the  $Mg_2Si$  phase by Y and (or) Sb doping which possesses a larger atomic radius.

2.2. Thermodynamic Properties. In order to understand the thermodynamic stability of the doped system, we calculated the formation energy and cohesive energy. The calculated formation energy and cohesive energy of the Mg<sub>2</sub>Si phase agree well with the calculated values (-25.92 kJ/mol and -271.15 kJ/mol in [34] and -17.7 kJ/mol and -299.27 kJ/mol in [35]). The process of Y and Sb doping of Mg<sub>2</sub>Si is outlined in Table 2.

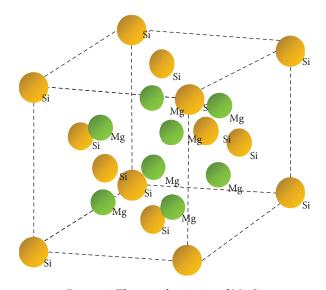



FIGURE 1: The crystal structure of Mg<sub>2</sub>Si.

The corresponding formation energies are shown in Figure 4. It can be seen that the formation energies of (a)  $Mg_7Si_4Y$ , (c)  $Mg_8Si_4Y$ , (f)  $Mg_8Si_4Sb$ , (g)  $Mg_6Si_4YSb$ , (i) Mg<sub>7</sub>Si<sub>4</sub>YSb, (m) Mg<sub>8</sub>Si<sub>4</sub>YSb, and (n) Mg<sub>7</sub>Si<sub>4</sub>YSb are negative, indicating that only the structures above are stable. The formation energy is successively (m) < (i) < (n) < (c) < (f) < (g) < (a). It means that (m) Mg<sub>8</sub>Si<sub>4</sub>YSb is the easiest to form and (a)  $Mg_7Si_4Y$  is the most difficult to form. Whether for single doping or composite doping, the formation energies of Y and Sb entered into the interstitial space < the formation energies of Y and Sb replaced the Mg sites < the formation energies of Y and Sb replaced the Si sites (even if it cannot form stable structures). It confirms that Y or Sb is difficult to interpolate into Mg<sub>2</sub>Si phases. For the seven stable structures of (a), (c), (f), (g), (i), (m), and (n), the formation energies of composite doping are generally smaller than those of single doping. Only the formation of (g)  $Mg_6Si_4YSb$  is greater than those of (c)  $Mg_8Si_4Y$ and (f) Mg<sub>8</sub>Si<sub>4</sub>Sb; this is because Y and Sb in (g) Mg<sub>6</sub>Si<sub>4</sub>YSb has replaced all the Mg sites to form substitutional solid solutions.

For the stable structures (a), (c), (f), (g), (i), (m), and (n), the calculated cohesive energies are shown in Figure 5. It can be seen that the absolute value of (g)  $Mg_6Si_4YSb$  is the largest, indicating that (g)  $Mg_6Si_4YSb$  is more stable than the other six structures and (m)  $Mg_8Si_4YSb$  has the smallest absolute value and the worst stability. Whether by single doping or composite doping, the structures of Y- or Sb-substituted Mg sites are most stable, while the structures of Y or Sb that entered into the interstitial space are most unstable.

2.3. Mechanical Properties. To satisfy the mechanical stability of the formed structures, the elastic constants of  $Mg_2Si$ , (a), (c), (f), (g), (i), (m), and (n) are calculated as shown in Table 3. (a)  $Mg_7Si_4Y$ , (c)  $Mg_8Si_4Y$ , and (f)  $Mg_8Si_4Sb$  are still cubic structures, (g)  $Mg_6Si_4YSb$  and (m)  $Mg_8Si_4YSb$  are transformed into tetragonal structures, and (i)  $Mg_7Si_4YSb$ 

FIGURE 2: The structures of single doping.



FIGURE 3: The structures of composite doping.

| Phase                                   | Lattice constants<br>(nm) |           |           | Cell volume<br>(nm <sup>3</sup> ) | Ref. |
|-----------------------------------------|---------------------------|-----------|-----------|-----------------------------------|------|
|                                         | <i>a</i> = 0.633          |           |           | V = 0.254                         |      |
| M C'                                    | a = 0.639                 |           |           | V = 0.261                         | [31] |
| $Mg_8Si_4$                              | a = 0.635                 |           |           | V = 0.256                         | [32] |
|                                         | a = 0.634                 |           |           | V = 0.255                         | [33] |
| (a) Mg <sub>7</sub> Si <sub>4</sub> Y   | a = 0.643                 |           |           | V = 0.266                         |      |
| (b) Mg <sub>8</sub> Si <sub>3</sub> Y   | a = 0.637                 | b = 0.687 | c = 0.687 | V = 0.301                         |      |
| (c) Mg <sub>8</sub> Si <sub>4</sub> Y   | a = 0.653                 |           |           | V = 0.278                         |      |
| (d) Mg <sub>7</sub> Si <sub>4</sub> Sb  | a = 0.640                 |           |           | V = 0.263                         |      |
| (e) Mg <sub>8</sub> Si <sub>3</sub> Sb  | a = 0.645                 | b = 0.643 | c = 0.643 | V = 0.267                         |      |
| (f) Mg <sub>8</sub> Si <sub>4</sub> Sb  | a = 0.656                 |           |           | V = 0.282                         |      |
| (g) Mg <sub>6</sub> Si <sub>4</sub> YSb | a = 0.659                 | b = 0.629 | c = 0.659 | V = 0.273                         |      |
| (h) Mg <sub>7</sub> Si <sub>3</sub> YSb | a = 0.654                 | b = 0.655 | c = 0.655 | V = 0.280                         |      |
| (i) Mg <sub>7</sub> Si <sub>4</sub> YSb | a = 0.662                 |           |           | V = 0.290                         |      |
| (j) Mg <sub>8</sub> Si <sub>2</sub> YSb | a = 0.607                 | b = 0.833 | c = 0.607 | V = 0.307                         |      |
| (k) Mg <sub>7</sub> Si <sub>3</sub> YSb | a = 0.741                 | b=0.647   | c = 0.649 | V = 0.273                         |      |
| (l) Mg <sub>8</sub> Si <sub>3</sub> YSb | a = 0.615                 | b = 0.820 | c = 0.604 | V = 0.304                         |      |
| (m) Mg <sub>8</sub> Si <sub>4</sub> YSb | a = 0.662                 | b = 0.787 | c = 0.662 | V = 0.345                         |      |
| (n) Mg <sub>7</sub> Si <sub>4</sub> YSb | a = 0.662                 |           |           | V = 0.289                         |      |
| (o) Mg <sub>8</sub> Si <sub>3</sub> YSb | <i>a</i> = 0.643          | b = 0.690 | c = 0.661 | <i>V</i> = 0.293                  |      |

TABLE 1: The optimized lattice parameters for Y and (or) Sb doping of  $Mg_2Si$ .

TABLE 2: The process of Y and Sb doping of Mg<sub>2</sub>Si.

| Reactants                       | ctants Products |    |               |                                         |    |    |
|---------------------------------|-----------------|----|---------------|-----------------------------------------|----|----|
| Mg <sub>8</sub> Si <sub>4</sub> | Y               |    | $\rightarrow$ | (a) Mg <sub>7</sub> Si <sub>4</sub> Y   | Mg |    |
| Mg <sub>8</sub> Si <sub>4</sub> | Y               |    | $\rightarrow$ | (b) Mg <sub>8</sub> Si <sub>3</sub> Y   | Si |    |
| $\mathrm{Mg}_8\mathrm{Si}_4$    | Y               |    | $\rightarrow$ | (c) Mg <sub>8</sub> Si <sub>4</sub> Y   |    |    |
| $\mathrm{Mg}_8\mathrm{Si}_4$    | Sb              |    | $\rightarrow$ | (d) Mg <sub>7</sub> Si <sub>4</sub> Sb  | Mg |    |
| $Mg_8Si_4$                      | Sb              |    | $\rightarrow$ | (e) Mg <sub>8</sub> Si <sub>3</sub> Sb  | Si |    |
| $Mg_8Si_4$                      | Sb              |    | $\rightarrow$ | (f) Mg <sub>8</sub> Si <sub>4</sub> Sb  |    |    |
| $\mathrm{Mg}_8\mathrm{Si}_4$    | Y               | Sb | $\rightarrow$ | (g) Mg <sub>6</sub> Si <sub>4</sub> YSb | Mg | Mg |
| $Mg_8Si_4$                      | Y               | Sb | $\rightarrow$ | (h) Mg <sub>7</sub> Si <sub>3</sub> YSb | Mg | Si |
| $\mathrm{Mg}_8\mathrm{Si}_4$    | Y               | Sb | $\rightarrow$ | (i) Mg <sub>7</sub> Si <sub>4</sub> YSb | Mg |    |
| $\mathrm{Mg}_8\mathrm{Si}_4$    | Y               | Sb | $\rightarrow$ | (j) Mg <sub>8</sub> Si <sub>2</sub> YSb | Si | Si |
| $Mg_8Si_4$                      | Y               | Sb | $\rightarrow$ | (k) Mg <sub>7</sub> Si <sub>3</sub> YSb | Mg | Si |
| $Mg_8Si_4$                      | Y               | Sb | $\rightarrow$ | (l) Mg <sub>8</sub> Si <sub>3</sub> YSb | Si |    |
| Mg <sub>8</sub> Si <sub>4</sub> | Y               | Sb | $\rightarrow$ | (m) Mg <sub>8</sub> Si <sub>4</sub> YSb |    |    |
| Mg <sub>8</sub> Si <sub>4</sub> | Y               | Sb | $\rightarrow$ | (n) Mg <sub>7</sub> Si <sub>4</sub> YSb | Mg |    |
| $Mg_8Si_4$                      | Y               | Sb | $\rightarrow$ | (o) Mg <sub>8</sub> Si <sub>3</sub> YSb | Si |    |

and (n)  $Mg_7Si_4YSb$  are transformed into triclinic structures. The mechanical stability of the phases above can be judged by the criterion for cubic, tetragonal, and triclinic systems in References [36] and [37]. Only  $Mg_2Si$ , (a)  $Mg_7Si_4Y$ , (f)  $Mg_8Si_4Sb$ , (g)  $Mg_6Si_4YSb$ , and (i)  $Mg_7Si_4YSb$  satisfies the criteria of mechanical stability.

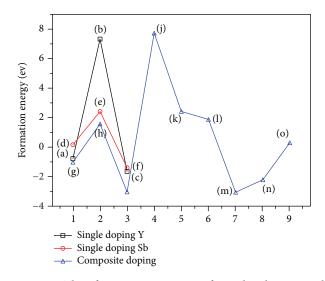



FIGURE 4: The formation energies of single doping and composite doping.

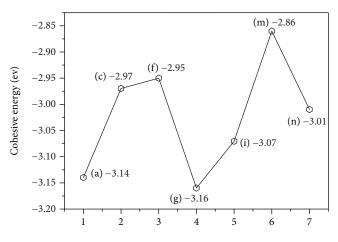



FIGURE 5: The cohesive energies of single doping and composite doping.

The calculated bulk modulus, shear modulus, and Young's modulus (51.23 GPa, 51.50 GPa, and 115.85 GPa) of Mg<sub>2</sub>Si agree well with the calculated results (57.88 GPa, 48.82 GPa, and 114.32 GPa [38]). Young's modulus calculated for Mg<sub>2</sub>Si, (a) Mg<sub>7</sub>Si<sub>4</sub>Y, (f) Mg<sub>8</sub>Si<sub>4</sub>Sb, (g) Mg<sub>6</sub>Si<sub>4</sub>YSb, and (i) Mg<sub>7</sub>Si<sub>4</sub>YSb are shown in Figure 6. No matter with what kind of doping, Young's modulus of pure Mg<sub>2</sub>Si will decrease significantly. It means that Mg<sub>2</sub>Si has the highest stiffness. In other words, Y and Sb doping will improve the plasticity of Mg<sub>2</sub>Si. For single doping, Young's modulus of doped Sb is lesser than that of doped Y. This shows that the plasticity of (f) Mg<sub>8</sub>Si<sub>4</sub>Sb is better than that of (a)  $Mg_7Si_4Y$ , and the stiffness of (a)  $Mg_7Si_4Y$  is larger than that of (f) Mg<sub>8</sub>Si<sub>4</sub>Sb. For composite doping, Young's modulus of (g) Mg<sub>6</sub>Si<sub>4</sub>YSb is less than Young's modulus of (i) Mg<sub>7</sub>Si<sub>4</sub>YSb. This shows that the plasticity of (g) Mg<sub>6</sub>Si<sub>4</sub>YSb is better than that of (i) Mg<sub>7</sub>Si<sub>4</sub>YSb, and the stiffness of (g)  $Mg_6Si_4YSb$  is lesser than that of (i)  $Mg_7Si_4YSb$ .

The values of K/G, Poisson's ratio u,  $A_U$ , and Debye temperature  $\Theta_D$  for Mg<sub>2</sub>Si, (a) Mg<sub>7</sub>Si<sub>4</sub>Y, (f) Mg<sub>8</sub>Si<sub>4</sub>Sb, (g)

| Phases                                  |                   |                  | Elastic stiffness co | onstants $C_{ij}$ (GPa) |                   |                  |
|-----------------------------------------|-------------------|------------------|----------------------|-------------------------|-------------------|------------------|
| Mg <sub>2</sub> Si                      | $C_{11} = 131.31$ | $C_{12} = 11.19$ | $C_{44} = 46.46$     | ·                       |                   |                  |
| (a) Mg <sub>7</sub> Si <sub>4</sub> Y   | $C_{11} = 106.00$ | $C_{12} = 25.76$ | $C_{44} = 29.00$     |                         |                   |                  |
| (c) Mg <sub>8</sub> Si <sub>4</sub> Y   | $C_{11} = 22.72$  | $C_{12} = 60.54$ | $C_{44} = 21.17$     |                         |                   |                  |
| (f) Mg <sub>8</sub> Si <sub>4</sub> Sb  | $C_{11} = 53.73$  | $C_{12} = 40.66$ | $C_{44} = 16.16$     |                         |                   |                  |
| (g) Mg <sub>6</sub> Si <sub>4</sub> YSb | $C_{11} = 99.10$  | $C_{12} = 26.56$ | $C_{13} = 28.41$     | $C_{33} = 99.21$        | $C_{44} = 13.71$  | $C_{66} = 13.03$ |
|                                         | $C_{11} = 96.36$  | $C_{12} = 23.99$ | $C_{13} = 24.26$     | $C_{14} = -1.44$        | $C_{15} = 2.91$   | $C_{16} = -1.61$ |
|                                         | $C_{21} = 23.99$  | $C_{22} = 96.44$ | $C_{23} = 24.34$     | $C_{24} = -1.78$        | $C_{25} = 2.58$   | $C_{26} = -1.05$ |
| (i) Mg <sub>7</sub> Si <sub>4</sub> YSb | $C_{31} = 24.26$  | $C_{32} = 24.34$ | $C_{33} = 96.63$     | $C_{34} = -1.17$        | $C_{35} = 1.69$   | $C_{36} = -1.56$ |
|                                         | $C_{41} = -1.44$  | $C_{42} = -1.78$ | $C_{43} = -1.17$     | $C_{44} = 21.21$        | $C_{45} = -0.91$  | $C_{46} = 1.69$  |
|                                         | $C_{51} = 2.91$   | $C_{52} = 2.58$  | $C_{53} = 1.69$      | $C_{54} = -0.91$        | $C_{55} = 19.72$  | $C_{56} = -2.92$ |
|                                         | $C_{61} = -1.61$  | $C_{62} = -1.05$ | $C_{63} = -1.56$     | $C_{64} = 1.69$         | $C_{65} = -2.92$  | $C_{66} = 20.75$ |
| (m) Mg <sub>8</sub> Si <sub>4</sub> YSb | $C_{11} = 75.12$  | $C_{12} = 20.81$ | $C_{13} = 34.21$     | $C_{33} = 75.02$        | $C_{44} = -11.73$ | $C_{66} = -9.39$ |
|                                         | $C_{11} = 52.86$  | $C_{12} = 50.91$ | $C_{13} = 51.14$     | $C_{14} = -8.13$        | $C_{15} = -3.89$  | $C_{16} = 3.88$  |
|                                         | $C_{21} = 50.91$  | $C_{22} = 53.37$ | $C_{23} = 52.35$     | $C_{24} = 2.55$         | $C_{25} = 8.78$   | $C_{26} = 1.21$  |
| /                                       | $C_{31} = 51.14$  | $C_{32} = 52.35$ | $C_{33} = 52.71$     | $C_{34} = 0.13$         | $C_{35} = -0.49$  | $C_{36} = -8.16$ |
| (n) Mg <sub>7</sub> Si <sub>4</sub> YSb | $C_{41} = -8.13$  | $C_{42} = 2.55$  | $C_{43} = 0.13$      | $C_{44} = 21.38$        | $C_{45} = -4.73$  | $C_{46} = 4.06$  |
|                                         | $C_{51} = -3.89$  | $C_{52} = 8.78$  | $C_{53} = -0.49$     | $C_{54} = -4.73$        | $C_{55} = 19.08$  | $C_{56} = -3.33$ |
|                                         | $C_{61} = 3.88$   | $C_{62} = 1.21$  | $C_{63} = -8.16$     | $C_{64} = 4.06$         | $C_{65} = -3.33$  | $C_{66} = 18.76$ |

TABLE 3: The elastic constants for  $Mg_2Si_4Y$ , (a)  $Mg_7Si_4Y$ , (c)  $Mg_8Si_4Y$ , (f)  $Mg_8Si_4Sb$ , (g)  $Mg_6Si_4YSb$ , (i)  $Mg_7Si_4YSb$ , (m)  $Mg_8Si_4YSb$ , and (n)  $Mg_7Si_4YSb$ .

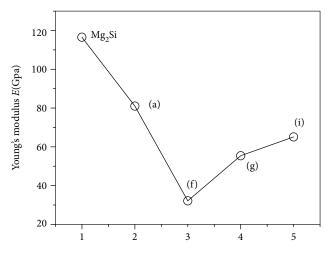



FIGURE 6: The results of Young's modulus.

TABLE 4: The values of the K/G, u,  $A_U$ , and  $\Theta_D$  for  $Mg_2Si$ , (a)  $Mg_7Si_4Y$ , (f)  $Mg_8Si_4Sb$ , (g)  $Mg_6Si_4YSb$ , and (i)  $Mg_7Si_4YSb$ .

|                      | Mg <sub>2</sub> Si | (a)<br>Mg <sub>7</sub> Si <sub>4</sub> Y | (f)<br>Mg <sub>8</sub> Si <sub>4</sub> Sb | (g)<br>Mg <sub>6</sub> Si <sub>4</sub> YSb | (i)<br>Mg <sub>7</sub> Si <sub>4</sub> YSb |
|----------------------|--------------------|------------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|
| K/G                  | 0.99               | 1.59                                     | 3.99                                      | 2.53                                       | 1.88                                       |
| и                    | 0.12               | 0.24                                     | 0.38                                      | 0.33                                       | 0.27                                       |
| $A_{\rm U}$          | 7.93               | 12.85                                    | 104.51                                    | 138.31                                     | 49.18                                      |
| $\Theta_{\rm D}$ (K) | 600.23             | 445.60                                   | 248.77                                    | 331.88                                     | 346.11                                     |

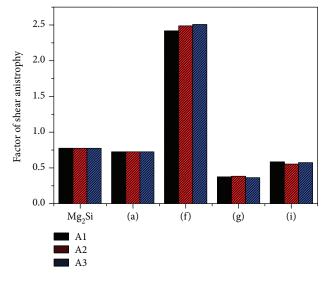



FIGURE 7: The results of shear anisotropy.

 $Mg_6Si_4YSb$ , and (i)  $Mg_7Si_4YSb$  are shown in Table 4. Poisson's ratio u (0.12) and Debye temperature  $\Theta_D$  (600.23 K) calculated for  $Mg_2Si$  agree with the results (0.161 and 581.6719 K [38]). From the values of K/G, it can be seen that the values of  $Mg_2Si$  and (a)  $Mg_7Si_4Y$  are less than the threshold value of 1.75, so  $Mg_2Si$  and (a)  $Mg_7Si_4Y$  are brittle materials, while (f)  $Mg_8Si_4Sb$ , (g)  $Mg_6Si_4YSb$ , and (i)  $Mg_7Si_4YSb$  are ductile materials.  $Mg_2Si$  has minimal K/G and has the worst brittleness, while (f)  $Mg_8Si_4Sb$  has maximalK/G and

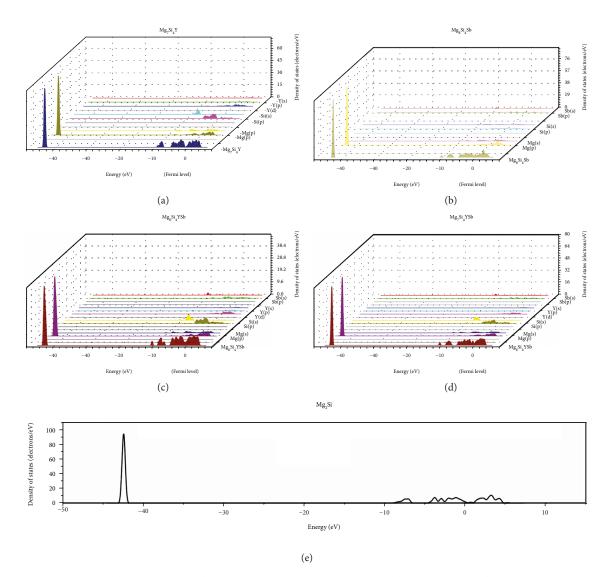



FIGURE 8: The total density of states (DOS) and the partial density of states (PDOS) for five structures.

has the greatest ductility. From the values of *u*, it can be seen that (f) Mg<sub>8</sub>Si<sub>4</sub>Sb has the best plasticity and Mg<sub>2</sub>Si has the worst plasticity. The plasticity is successively (f)  $Mg_8Si_4Sb > (g)$  $Mg_6Si_4YSb > (i) Mg_7Si_4YSb > (a) Mg_7Si_4Y > Mg_2Si.$  From  $A_{U}$ , it can be seen that the five structures are all anisotropic and Mg<sub>2</sub>Si has minimal value, so the degree of anisotropy is minimal. (g) Mg<sub>6</sub>Si<sub>4</sub>YSb has maximal value, and the degree of anisotropy is the highest. The degree of anisotropy of Mg<sub>2</sub>Si will be raised by doped Y and Sb. From the values of  $\Theta_D$ , it can be seen that the Debye temperature ( $\Theta_D$ ) of Mg<sub>2</sub>Si is the highest, which shows that the thermal conductivity of Mg<sub>2</sub>Si is the best, the chemical bonds between the cell's atoms are the strongest, and the hardness is the greatest. (f) Mg<sub>8</sub>Si<sub>4</sub>Sb has the lowest Debye temperature ( $\Theta_D$ ), which shows that the thermal conductivity of (f) Mg<sub>8</sub>Si<sub>4</sub>Sb is the worst, the chemical bonds between the cell's atoms are the weakest, and the hardness is the least. Furthermore, no matter with what kind of doping, the Debye temperature  $(\Theta_{\rm D})$  of Mg<sub>2</sub>Si will be lowered. It is consistent with the calculated results of Debye temperature ( $\Theta_D$ ) [27].

The shear anisotropic factors  $A_1$ ,  $A_2$ , and  $A_3$  are shown in Figure 7. It can be found that the five structures are all anisotropic on the three planes, and the degree of anisotropy on each plane is very similar. (f) Mg<sub>8</sub>Si<sub>4</sub>Sb has the highest degree of anisotropy, while Mg<sub>2</sub>Si has the lowest degree of anisotropy.

2.4. Electronic Properties. To understand the action mechanism, the total density of states (DOS) and the partial density of states (PDOS) should be studied. Figure 8(a) shows the density of states of  $Mg_7Si_4Y$ , between -3 eV and the Fermi level, where there exists a very strong orbital hybridization for Mg (2p) and Y (4d) indicating very strong bonding effects. Figure 8(b) shows the density of states of  $Mg_8Si_4Sb$ , where there is strong orbital hybridization between the atoms of Mg, Si, and Sb. Figure 8(c) shows the density of states of  $Mg_6Si_4YSb$ . The mainly orbital hybridization appears in -6 to 4 eV. The atoms of Mg and Y have strong bonding effects, while the bonding effects of the other atoms are weak. Figure 8(d) shows the density of states of  $Mg_7Si_4YSb$ , where all the four atoms show orbital hybridization. In a word, Y doping causes strong orbital hybridization between Mg (2p) and Y (4d), while Sb doping causes strong orbital hybridization between Mg (2p), Si (3p), and Sb (5p). The Fermi surface shifts towards the high-energy region after Y and Sb doping, resulting in an increase in the density of the electron energy states corresponding to the Fermi level. The values are 2 eV (Mg<sub>2</sub>Si), 3.05 eV (Mg<sub>7</sub>Si<sub>4</sub>Y), 5.4 eV (Mg<sub>8</sub>Si<sub>4</sub>Sb), 3.7 eV (Mg<sub>6</sub>Si<sub>4</sub>YSb), and 2.9 eV (Mg<sub>7</sub>Si<sub>4</sub>YSb) in turn, indicating that doping can improve the electrical conductivity of Mg<sub>2</sub>Si. This is also consistent with the results which were obtained in Reference [27]. The electrical conductivity of Mg<sub>8</sub>Si<sub>4</sub>Sb is the best.

# 3. Conclusions

The structural, stability, thermodynamic, and mechanical properties of Y and Sb doped into Mg<sub>2</sub>Si are calculated by the GGA-PBE method. The results revealed that the stable structures that can be formed are (a) Mg<sub>7</sub>Si<sub>4</sub>Y, (f) Mg<sub>8</sub>Si<sub>4</sub>Sb, (g) Mg<sub>6</sub>Si<sub>4</sub>YSb, and (i) Mg<sub>7</sub>Si<sub>4</sub>YSb. (g) Mg<sub>6</sub>Si<sub>4</sub>YSb is the most stable, while (f) Mg<sub>8</sub>Si<sub>4</sub>Sb is the least stable. Young's modulus of Mg<sub>2</sub>Si will be reduced by Y and Sb doping, the ductility of Mg<sub>2</sub>Si will be improved, and the brittleness of Mg<sub>2</sub>Si will be lowered, and then the thermal conductivity and hardness of Mg<sub>2</sub>Si will be reduced by Y and Sb doping. The Debye temperature ( $\Theta_D$ ) of (f) Mg<sub>8</sub>Si<sub>4</sub>Sb in the five structures is the lowest. Doping with Y and Sb can improve the conductivity.

### **Data Availability**

The computational data used to support the findings of this study are included within the article.

#### **Conflicts of Interest**

The authors declare that there is no conflict of interest regarding the publication of this paper.

#### Acknowledgments

The authors would like to acknowledge the National Natural Science Foundation of China. This work was also supported by the Key Fund Project (Grant No. 51634004), the Doctoral Scientific Research Foundation of Liaoning Province (Grant No. 20180551213), the Key Laboratory of Chemical Metallurgy Engineering of Liaoning Province, University of Science and Technology Liaoning (Grant No. USTLKFSY201711), and the Fund Project of University of Science and Technology Liaoning (Grant No. 2017YY02).

## References

[1] M. Hosseinifar and D. V. Malakhov, "Effect of Ce and La on microstructure and properties of a 6xxx series type aluminum alloy," Journal of Materials Science, vol. 43, no. 22, pp. 7157–7164, 2008.

- [2] O. Engler, C. Schäfer, and H. J. Brinkman, "Crystal-plasticity simulation of the correlation of microtexture and roping in AA 6xxx Al-Mg-Si sheet alloys for automotive applications," *Acta Materialia*, vol. 60, no. 13-14, pp. 5217–5232, 2012.
- [3] A. Jahangiri, M. H. Idris, and S. Farahany, "Investigation on tungsten inert gas welding of in situ Al-15 and 20 Mg<sub>2</sub>Si composites with an Al-Si filler," *Journal of Composite Materials*, vol. 47, no. 10, pp. 1283–1291, 2013.
- [4] B. Yu, D. Chen, Q. Tang, C. Wang, and D. Shi, "Structural, electronic, elastic and thermal properties of Mg<sub>2</sub>Si," *Journal* of Physics and Chemistry of Solids, vol. 71, no. 5, pp. 758– 763, 2010.
- [5] H. Y. Wang, Q. C. Jiang, B. X. Ma, Y. Wang, J. G. Wang, and J. B. Li, "Modification of Mg<sub>2</sub>Si in Mg–Si alloys with K<sub>2</sub>TiF<sub>6</sub>, KBF<sub>4</sub> and KBF<sub>4</sub> + K<sub>2</sub>TiF<sub>6</sub>," *Journal of Alloys and Compounds*, vol. 387, no. 1-2, pp. 105–108, 2005.
- [6] L. Wang and X. Y. Qin, "The effect of mechanical milling on the formation of nanocrystalline Mg<sub>2</sub>Si through solid-state reaction," *Scripta Materialia*, vol. 49, no. 3, pp. 243–248, 2003.
- [7] J. Zhang, Z. Fan, Y. Q. Wang, and B. L. Zhou, "Microstructural development of Al-15wt.%Mg<sub>2</sub>Si in situ composite with mischmetal addition," *Materials Science and Engineering: A*, vol. 281, no. 1-2, pp. 104–112, 2000.
- [8] M. Emamy, H. R. Jafari Nodooshan, and A. Malekan, "The microstructure, hardness and tensile properties of Al-15%Mg<sub>2</sub>Si in situ composite with yttrium addition," *Materials* & Design, vol. 32, no. 8-9, pp. 4559–4566, 2011.
- [9] Y.-Z. Lü, Q.-D. Wang, X.-Q. Zeng, W.-J. Ding, and Y.-P. Zhu, "Effects of silicon on microstructure, fluidity, mechanical properties, and fracture behaviour of Mg–6Al alloy," *Materials Science and Technology*, vol. 17, no. 2, pp. 207–214, 2001.
- [10] A. Bahrami, A. Razaghian, M. Emamy, and R. Khorshidi, "The effect of Zr on the microstructure and tensile properties of hot-extruded Al-Mg<sub>2</sub>Si composite," *Materials & Design*, vol. 36, pp. 323–330, 2012.
- [11] N. Soltani, A. Bahrami, and M. I. Pech-Canul, "The effect of Ti on mechanical properties of extruded in-situ Al-15 pct Mg<sub>2</sub>Si composite," *Metallurgical and Materials Transactions A*, vol. 44, no. 9, pp. 4366–4373, 2013.
- [12] H. Z. Ye and X. Y. Liu, "Review of recent studies in magnesium matrix composites," *Journal of Materials Science*, vol. 39, no. 20, pp. 6153–6171, 2004.
- [13] V. K. Zaitsev, M. I. Fedorov, E. A. Gurieva et al., "Highly effective Mg<sub>2</sub>Si<sub>1-x</sub> Sn<sub>x</sub> thermoelectrics," *Physical Review B*, vol. 74, no. 4, article 045207, 2006.
- [14] W. Liu, Q. Zhang, X. Tang, H. Li, and J. Sharp, "Thermoelectric properties of Sb-doped Mg<sub>2</sub>Si<sub>0.3</sub>Sn<sub>0.7</sub>," *Journal of Electronic Materials*, vol. 40, no. 5, pp. 1062–1066, 2011.
- [15] J. Tani and H. Kido, "First-principles and experimental studies of impurity doping into Mg<sub>2</sub>Si," *Intermetallics*, vol. 16, no. 3, pp. 418–423, 2008.
- [16] T. Sakamoto, T. Iida, S. Kurosaki et al., "Thermoelectric behavior of Sb- and Al-doped n-type Mg<sub>2</sub>Si device under large temperature differences," *Journal of Electronic Materials*, vol. 40, no. 5, pp. 629–634, 2011.
- [17] T. Sakamoto, T. Iida, A. Matsumoto et al., "Thermoelectric characteristics of a commercialized Mg<sub>2</sub>Si source doped with Al, Bi, Ag, and Cu," *Journal of Electronic Materials*, vol. 39, no. 9, pp. 1708–1713, 2010.

- [18] M. I. Fedorov, V. K. Zaitsev, I. S. Eremin et al., "Kinetic properties of p-type Mg<sub>2</sub>Ge<sub>0.4</sub>Sn<sub>0.6</sub> solid solutions," in *Proceedings* of the 2nd European Conference on Thermoelectrics, Krakow, Poland, 2004.
- [19] M. C. Nicolaou, "Preparation, doping, physical properties and applications of the semiconductor solid solutions Mg<sub>2</sub>Si<sub>x</sub> Ge<sub>y</sub>Sn<sub>1-x-y</sub>," in *Proceedings of 5th International Conference* on Thermoelectric Energy Conversion, Arlington, TX, USA, 2005.
- [20] J. J. Pulikkotil, H. N. Alshareef, and U. Schwingenschlogl, "Fast track communication: variation of equation of state parameters in the Mg<sub>2</sub>(Si<sub>1-x</sub>Sn<sub>x</sub>) alloys," *Journal of Physics: Condensed Matter*, vol. 22, no. 35, article 352204, 2010.
- [21] A. S. Zhang and Y. Zhang, "Effect of RE, yttrium on morphology of primary Mg<sub>2</sub>Si phases in Mg<sub>2</sub>Si/AZ91D composites," *Special Casting & Nonferrous Alloys*, vol. 32, no. 8, pp. 690– 693, 2012.
- [22] M. C. Nicolaou, "Preparation, doping, physical properties and applications of the semiconductor solid solutions Mg2Six-GeySn1-x-y," in *Proceedings of 5th International Conference* on *Thermoelectric Energy Conversion*, Arlington, TX, USA, 2005.
- [23] Q. C. Jiang, H. Y. Wang, Y. Wang, B. X. Ma, and J. G. Wang, "Modification of Mg<sub>2</sub>Si in Mg–Si alloys with yttrium," *Materials Science & Engineering A*, vol. 392, no. 1-2, pp. 130–135, 2005.
- [24] M. Ioannou, G. Polymeris, E. Hatzikraniotis, A. U. Khan, K. M. Paraskevopoulos, and T. Kyratsi, "Solid-state synthesis and thermoelectric properties of Sb-doped Mg<sub>2</sub>Si materials," *Journal of Electronic Materials*, vol. 42, no. 7, pp. 1827–1834, 2013.
- [25] Y. Hu, L. Rao, and H. Yan, "Microstructures and mechanical properties of Si and Sb added Mg alloy," *Applied Mechanics* and Materials, vol. 44-47, pp. 2809–2813, 2011.
- [26] J. Tani and H. Kido, "Impurity doping into Mg<sub>2</sub>Sn: a first-principles study," *Physica B: Condensed Matter*, vol. 407, no. 17, pp. 3493–3498, 2012.
- [27] W. Fan, R. Chen, L. Wang, P. Han, and Q. Meng, "First-principles and experimental studies of Y-doped Mg<sub>2</sub>Si prepared using field-activated pressure-assisted synthesis," *Journal of Electronic Materials*, vol. 40, no. 5, pp. 1209–1214, 2011.
- [28] P. Villars and L. D. Calvert, *Handbook of Crystallographic Data for Intermetallic Phases*, ASM International, Metals Park, OH, USA, 2nd edition, 1991.
- [29] Z. W. Huang, Y. H. Zhao, H. Hou et al., "Point defects structure and alloying effects of V atoms into Ni<sub>3</sub>Al alloy: a first-principles study," *Rare Metal Materials and Engineering*, vol. 40, no. 12, pp. 2136–2141, 2011.
- [30] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," *Physical Review Letters*, vol. 77, no. 18, pp. 3865–3868, 1996.
- [31] E. A. Owen and G. D. Preston, "The atomic structure of two intermetallic compounds," *Proceedings of the Physical Society of London*, vol. 36, no. 1, pp. 341–348, 1924.
- [32] J. G. Barlock and L. F. Mondolfo, "Structure of some aluminium-iron-magnesium-manganese-silicon alloys," *Zeitschrift für Metallkunde*, vol. 66, p. 605, 1975.
- [33] V. M. Glazov and N. N. Glagoleva, "Change in the nature of the chemical bond in compounds of magnesium with Si, Ge, Sn, and Pb upon melting," *Inorganic Materials*, vol. 1, p. 989, 1965.

- [34] L. Zhang, H. Hou, Z. Wen, and Y. Guo, "Electronic structural, elastic properties of MgCu<sub>2</sub> and Mg<sub>2</sub>Si phases based on first-principles calculation," *Journal of Measurement Science and Instrumentation*, vol. 8, no. 3, pp. 289–294, 2017.
- [35] H. Zhang, S. Shang, J. E. Saal et al., "Enthalpies of formation of magnesium compounds from first-principles calculations," *Intermetallics*, vol. 17, no. 11, pp. 878–885, 2009.
- [36] Z. J. Wu, E. J. Zhao, H. P. Xiang, X. F. Hao, X. J. Liu, and J. Meng, "Crystal structures and elastic properties of superhard Ir N<sub>2</sub> and Ir N<sub>3</sub> from first principles," *Physical Review B*, vol. 76, no. 5, article 054115, 2007.
- [37] F. Mouhat and F. X. Coudert, "Necessary and sufficient elastic stability conditions in various crystal systems," *Physical Review B*, vol. 90, no. 22, article 224104, 2014.
- [38] Z. W. Huang, Y. H. Zhao, H. Hou, and P. D. Han, "Electronic structural, elastic properties and thermodynamics of Mg<sub>17</sub>Al<sub>12</sub>, Mg<sub>2</sub>Si and Al<sub>2</sub>Y phases from first-principles calculations," *Physica B: Condensed Matter*, vol. 407, no. 7, pp. 1075– 1081, 2012.



The Scientific

World Journal

Advances in Chemistry



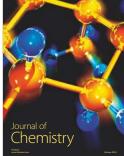


 $\bigcirc$ 

Hindawi

Submit your manuscripts at www.hindawi.com






International Journal of Polymer Science





Advances in Condensed Matter Physics



International Journal of Analytical Chemistry



International Journal of Corrosion









BioMed Research International







Advances in Tribology



Journal of Nanotechnology



**Materials Science and Engineering**