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Three new nonplanar barbituric derivatives, named as TTB, TTTB, and TOB, were synthesized. The D-π-A type conjugated
compounds showed obvious intramolecular charge transfer (ICT) property, which was evidenced by theoretical calculations and
spectral analyses. All of them exhibited aggregation induced emission (AIE) when formed nanoaggregates. These nanoaggregates
also showed reversible mechanofluorochromism (MFC). Their red light emission became deep red after grinding and then
recovered with dichloromethane fuming. Hence, a strategy to fabricate mechanofluorochromic nanoaggregate phosphors via
nonplanar π-skeleton and steric effect was demonstrated, and these nanophosphors possess potentials for mechanosensors and
anticounterfeiting technology.

1. Introduction

Conventional organic luminescent materials have little fluo-
rescence due to aggregation (aggregation-caused quenching
(ACQ) effect), which severely limits the applications in solid
state [1, 2]. Fortunately, Hong and coworkers discovered
a series of compounds and opened a new door for
aggregation-induced emission (AIE) [3, 4]. Many research
groups have developed strong interest in further designing
and synthesizing some AIE organic luminescent materials
and have discovered and summarized the interesting proper-
ties of AIE materials [5–12]. Though many AIE materials
have been reported, however, the relationship between mol-
ecule structure and the AIE effect still remains ambiguous.
Therefore, it is of great significance to design and synthesize
more AIE compounds and explore the structure-property
relationship.

In our former work, a series of thiophene derivatives with
one, two, and four branches attaching on thiophene, respec-
tively, were synthesized [13]. In these compounds, intramo-

lecular charge transfer (ICT) occurred from each branch to
thiophene, producing multidirectional polarization body.
The relationship between the multidirectional polarization
and the AIE effect was studied. It was found that simple
one-branched compound with dipolar ICT showed advan-
tage in AIE effect over the multibranched one.

Based on the former work, we further design and syn-
thesize several dipolar compounds constituted by thio-
phene and barbitural acid in the current submission. In
this work, the monomer, dimer, and trimer of thiophenyl
serve as electron donor. The emphasis of this work is
put on the relationship between the degree of the oligo-
merization in the electron donor and the AIE effect. The
research results show that the compound with the trimer
of thiophenyl exhibits the strongest AIE effect. Additionally,
these barbituric derivative nanoaggregates exhibited strong
mechanofluorochromism (MFC) effects. The detailed results
are reported below.

In this paper, three barbituric derivatives were synthe-
sized and exhibited very good AIE property. Piezochromic
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luminescent materials are a type of force-stimulated respon-
sive materials that change the luminescence color and inten-
sity by varying the physical packing of the molecules [14–17].

2. Experimental Section

2.1. Materials and Characterizations. All the reagents
were obtained commercially and used without further
purification: 1,3-dimethylbarbituric acid (Aladdin, 98%),
2,2’-bithiophene-5-carboxaldehyde (Macklin, 98%), and
2,2’ : 5’,2”-terthiophene-5-carboxaldehyde (Macklin, 98%).
All the solvents used in this study were purified according
to standard methods prior to use. The 1H NMR spectrum
was recorded by AVANCZ II 400 spectrometer using
chloroform (CDCl3) as solvent. The absorption spectrum
was recorded using UV-2500 spectrometer. Measuring fluo-
rescence (FL) spectra was recorded by a F-4600 fluorescence
spectrophotometer. The fluorescence quantum yields of pure
solution and aggregate state were determined relative to
Coumarin 307 in ethanol solution as a quantum yield stan-
dard ðΦF ðfluorescence quantum yieldÞ = 56%Þ [18]. The
absorption and emission wavelengths of Coumarin 307 are
395nm and 500 nm in EtOH; since Coumarin 307 has a sim-
ilar maximum absorption and emission wavelength as the
synthesized compound, it was selected as a reference stan-
dard to determine the fluorescence quantum yield of TTB,
TTTB, and TOB. Theoretical calculations at the B3LYP/6-
31G (d) basis were used to determine the HOMO and LUMO
energies for the three compounds.

2.2. Syntheses. The compound of 1a was synthesized accord-
ing to literature methods [19]. The target luminogens (TTB,
TTTB, TOB) were synthesized by the Knoevenagel conden-
sation of aldehyde-based intermediates with 1,3-dimethyl
barbituric acid (Scheme 1).

2.2.1. Synthesis of 2,2’-Bithiophene-1,3-Dimethylbarbituric
Acid (TTB). A mixture of 1,3-dimethylbarbituric acid
(0.960 g, 6.18mmol) and 2,2’-bithiophene-5-carboxaldehyde
(1.00 g, 5.15mmol) in acetic (5mL) and acetic anhydride

(5mL) was refluxed for 2 h. The reaction was cooled to room
temperature and solid particles were filtered. The product
was then purified by recrystallization with acetic acid to give
0.89 g (90% yield): 1H NMR (400MHz, CDCl3): δ 8.65
(s, 1H), 7.80 (s, 1H), 7.55 (s, 1H), 7.44 (d, J = 5:4Hz,
1H), 7.37 (d, J = 4:6Hz, 1H), 7.12 (s, 1H), 3.43 (s, 6H)
(Figure S1); 13C NMR (151MHz, CDCl3): δ 162.18, 157.65,
134.69, 130.97, 130.33, 127.52, 125.40, 124.62, 124.45,
124.30, 123.78, 28.62, 27.97 (Figure S4).

2.2.2. Synthesis of 2,2′:5′,2′′-Terthiophene-1,3-
Dimethylbarbituric Acid (TTTB). A mixture of 1,3-dimethyl-
barbituric acid (0.670 g, 4.35mmol) and 2,2’:5’,2”-terthio-
phene-5-carboxaldehyde (1.00 g, 3.62mmol) in ethanol
(10mL) and two drops of acetic acid was refluxed for 4 h.
The reaction was cooled to room temperature, and the solid
particles were filtered. The product was then purified by
recrystallization with acetic acid to give 0.85 g (83% yield):
1H NMR (400MHz, CDCl3): δ 8.63 (d, J = 6:6Hz, 1H),
7.80 (d, J = 4:6Hz, 1H), 7.47 (d, J = 4:2Hz, 1H),
7.36 (d, J = 4:2Hz, 1H), 7.24 (s, 2H), 7.19 (s, 1H), 7.06
(d, J = 5:3Hz, 1H), 3.43 (s, 6H) (Figure S2); 13C NMR
(101MHz, CDCl3): δ 162.22, 161.56, 153.11, 150.90, 147.99,
146.47, 135.79, 134.99, 128.14, 127.59, 126.37, 124.14,
108.50, 28.39, 27.63 (Figure S5).

2.2.3. Synthesis of 5-Thiophen-2-yl-Furan-2-Carbaldehyde-
1,3-Dimethylbarbituric Acid (TOB). A mixture of 1,3-
dimethylbarbituric acid (1.05 g, 6.74mmol) and 1a (1.00 g,
5.62mmol) in ethanol (10mL) and two drops of acetic acid
was refluxed for 6 h. The reaction was cooled to room tem-
perature and the solid particles were filtered. The product
was then purified by recrystallization with acetic acid to
give 0.58 g (61% yield): 1H NMR (600MHz, CDCl3): δ 8.76
(d, J = 1:1Hz, 1H), 8.51(s, 1H), 8.01 (dt, J = 5:1, 1:3Hz,
1H), 7.91 (dd, J = 3:9, 1:3Hz, 1H), 7.29 (dd, J = 5:1, 3:8Hz,
1H), 7.26 (s, 1H), 3.43 (d, J = 3:8Hz, 6H) (Figure S3); 13C
NMR (151MHz, CDCl3): δ 162.69, 161.77, 151.35, 149.07,
145.46, 141.91, 128.25, 110.56, 28.95, 28.16 (Figure S6).
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Scheme 1: Synthetic routes towards TTB, TTTB, and TOB compounds.
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3. Results and Discussion

3.1. Optical Properties. As shown in Figure 1, the absorp-
tion peak wavelength (λa) and emission wavelength (λem)
of TTB and TOB are similar in THF solution, indicating
that both of the molecules have similar distribution of
electronic levels. The λa and λem for TTTB are much lon-
ger than those of TTB and TOB, which may be due to
that TTTB is a larger conjugated molecule with an addi-
tional thienyl in the electron donor (Figures 1(a) and
1(b)). As shown in Figure 1(b), the emission wavelengths
of the three compounds are 585, 654, and 640nm, respec-
tively. Obviously, in the solid state, the emission wave-
length of TTB shows a blue shift compared to TTTB
and TOB. These results have been proved by theoretically
calculated.

3.2. AIE Activities. The photoluminescence (PL) behaviors
of compounds TTB, TTTB, and TOB were investigated
in THF/H2O mixed solvent (Figure 2) with the concentra-
tion of all the three compounds of 1:0 × 10−5 mol/L. From
Figure 2(a), it can be clearly seen that the three com-
pounds have obvious AIE properties which show weak
fluorescence in pure THF solution and strong emission
in the aggregate state. For Figure 2(b), when f w ≤ 80%
for TTB and TOB, as well as f w ≤ 70% for TTTB, it is
obvious that the fluorescence intensity increases as f w is
increasing, accompanied by a red shift of the emission
wavelength (λem) which may be caused by intramolecular
charge transfer (ICT). As the water content increases, the
fluorescence intensity first increases and then decreases,
and the emission wavelength is always red-shifted. To ver-
ify the ICT mechanism, emission spectra were recorded in
different solvents with various polarities. As can be seen

from Figure 3, the emission wavelengths of the barbituric
acid derivatives TTB, TTTB, and TOB were red-shifted
with the increase of the solvent polarity. This phenome-
non is typical behavior of molecules with ICT nature.
The theoretical calculation results are consistent with this
phenomenon (Figure 4). When f w increases, the molecules
begin to accumulate in a limited space and, to some extent,
limit the free rotation of the intramolecular rotatable
groups, which makes the radiation transition pathway active
and leads to enhanced fluorescence emission [20–22]. How-
ever, when f w > 80% for TTB and TOB, as well as f w > 70%
for TTTB, molecules began to precipitate, resulting in weak
emission and blue shifts of the λem [23, 24]. Similarly, it can
be observed from the photographs of TTB, TTTB, and TOB
(Figure 5), with the f w ranging from 0 to 90%, all the three
compounds are AIE active.

The AIE index Im/I0, where Im is the maximum
fluorescence intensity of the nanoaggregate solution
(0 < f w < 100%), and I0 is the fluorescence intensity when
f w = 0%, is generally used to quantify the AIE activity [25].
From Figure 2(b), obviously, TTTB exhibits enhanced AIE
effect compared to TTB and TOB: in aggregation solution,
the luminescence intensity of TTTB increased by 20-fold
(f w = 70%/f w = 0%), with the fluorescence quantum yield
(ΦF) increasing from 1.5% to 14.9%. However, the maximum
luminescence enhancement of TTB (f w = 80%/f w = 0%) is
only 4-fold (ΦF : 0:3%to 1:6%) and the maximum emission
enhancement of TOB (f w = 80%/f w = 0%) is only 6-fold
(ΦF : 0:4%to 2:1%). TTTB shows the highest AIE index. This
may be attributed to two facts: (i) the energy gap between
HOMO and LUMO of TTTB is the smallest of the three com-
pounds, resulting in the strongest emission; (ii) oligothio-
phene is a stronger electron donor than the other two
compounds, which may lead to a stronger ICT in TTTB,
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Figure 1: (a) Absorption and (b) emission spectra of three compounds in THF solution (concentration: 1:0 × 10−5 mol/L; excitation
wavelength, TTB: 360 nm, TTTB: 480 nm, and TOB: 360 nm) and solid state (excitation wavelength, TTB: 410 nm, TTTB: 530 nm, and
TOB: 440 nm).
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Figure 2: (a) FL spectra of TTB, TTTB, and TOB in THF/H2O with different water fractions (f w). (b) FL peak location (blue) and emission
intensity (red) of TTB, TTTB, and TOB versus f w in THF/H2O (concentration: 1:0 × 10−5 mol/L; excitation wavelength, TTB: 360 nm, TTTB:
480 nm, and TOB: 360 nm).
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meaning that enhanced electrostatic interaction between
TTTB molecules that limits the intramolecular rotation of
some bonds in the nanoaggregate state [26–28].

The morphology and size of the nanoaggregates in the
THF/H2O with different f w were observed by scanning
electron microscopy (SEM) and dynamic light scattering
(DLS) (Figure 6), which show the formation of nanoaggre-
gates with relatively narrow sized distributions. As shown
in Figure 6, the average diameters (d) of the nanoaggregates
for TTB, TTTB, and TOB with their strongest emission
intensities (when f w = 80%, 70%, and 80%) are 140, 200,
130 nm, respectively.

3.3. Theoretical Calculations. As shown in Figure 7, the
HOMO-LUMO gaps for TTB, TTTB, and TOB are 3.07,
2.71, and 3.07 eV, respectively. The HOMO mainly localizes
in the donor furan or thiophene units, and the LUMO dis-
tributes over all the molecules; it was clearly confirmed that
a charge transfer effect occurred in the molecules [29]. As
shown in Figure 7, the visualized electrostatic potential
exhibited intramolecular charge transfer with a positive
region (blue) on the donor moiety and a negative region
(red) on the acceptor moiety. This theoretical result illus-
trates the transfer of electrons from the donor to the acceptor
moiety, corresponding to the observed optical properties.
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Figure 3: PL spectra of TTB, TTTB, and TOB in different solvents with varying polarities (concentration: 1:0 × 10−5 mol/L; excitation
wavelength, TTB: 360 nm, TTTB: 480 nm, and TOB: 360 nm).
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Figure 4: Plots of the electrostatic potential for TTB (a), TTTB (b), and TOB (c) with B3LYP/6-31G (d) on the isodensity surface of 0.001. The
color is coded as red for strong negative and blue for strong positive.
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Figure 5: Photographs of TTB, TTTB, and TOB at f w = 0‐90% under 365 nm UV light illumination.
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3.4. Mechanofluorochromic Properties. Based on the MFC
characteristics of nonplanar AIE molecules, the MFC perfor-
mances of TTB, TTTB, and TOB with helical structure were
investigated. As shown in Figures 8 and 9, TTB, TTTB, and
TOB are red powder (nanoaggregates) with red fluorescence
(λmax = 585, 654, and 640, respectively) under 365nm UV

excitation. After grinding, the color of TTB and TOB only
changed a little (λmax = 593 and 645, respectively), indicating
that the MFC activities for both TTB and TOB are very weak
and can be negligible. However, the color of TTTB became deep
red with a red shift of 26nm. The color change of TTTB before
and after grinding can be easily observed with naked eyes.
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Figure 6: SEM images (a) and DLS sizes (b) of TTB, TTTB, and TOB in THF/H2O (nanoaggregate state) at a concentration of 1 × 10−5 mM.
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After grinding, the three ground powders were exposed
to CH2Cl2 vapor at room temperature. As can be seen from
Figure 8, the fluorescent color of the compound after the
fume almost recovered to its original state. In particular, the
color change of TTTB is more obvious, its fluorescent color
changes from a ground deep-red to orange-red after fuming,
and the process is completely reversible.

Powder X-ray diffraction (XRD) were used to further
explore the MFC mechanism of these nanoaggregates. As
shown in Figure 10, all of the original nanoaggregate samples

had sharp and strong peaks, but the intensity of the peaks
decreased or even disappeared after grinding. The result
implies that the molecular morphology changed from crys-
talline to amorphous [30–32], and red shift of λem was attrib-
uted to the planarization induced by grinding. AIE molecules
usually adopt a twisted configuration due to the steric hin-
drance betweenmoieties and the formation of intermolecular
cavities with a loose packing mode. The binding energy
released after grinding and accompanied by the destruction
of crystal lattice. After fumed with methylene chloride gas,
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Figure 8: Photos of TTB, TTTB, and TOB and color changes under grinding and fuming stimuli.
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the XRD patterns gained their initial characteristic peaks,
indicating that the crystal structures were restored
(Figure 10).

4. Conclusions

In summary, we reported three compounds (TTB, TTTB,
and TOB) with typical AIE characteristics and highly revers-
ible piezochromic and vapochromic properties. Among
them, TTTB displayed the largest MFC spectra shift
(26 nm) with visible color changes. It was confirmed that
the emission bands of these compounds and their intensity
dramatically changed by switching the nanoaggregates
between crystalline and amorphous. These nanomaterials
can be used in color emission and security [33].
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