Removal of Synthetic Azo Dye using Bimetallic Nickel-Iron Nanoparticles¹

Shelby L. Foster¹, Katie Estoque², Michael Voecks³, Nikki Rentz⁴, Lauren F. Greenlee¹

¹Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville AR
²Department of Chemistry and Chemical Biology, Cornell University, Ithaca NY
³Department of Computer Science, University of Colorado Boulder, Boulder CO
⁴National Institute of Standards and Technology, Boulder CO

Correspondence should be addressed to Lauren F. Greenlee; greenlee@uark.edu

Supplemental Information

0 Weeks			1 Week		
Target Ratio	CS	Alloy	Target Ratio	CS	Alloy
1:1	0.57	1.06	1:1	0.61	1.15
0.5:1	0.40	0.54	0.5:1	0.43	0.57
0.2:1	0.09	0.20	0.2:1	0.11	0.23
2 Weeks			3 Weeks		
Target Ratio	CS	Alloy	Target Ratio	CS	Alloy
1:1	0.51	1.11	1:1	0.92	1.10
0.5:1	0.38	0.59	0.5:1	0.40	0.55
0.2:1	0.19	0.23	0.2:1	0.16	0.21

Table S1: ICP results for nickel to iron molar ratio for fresh nanoparticles and stored nanoparticles over a span of 3 weeks for both core shell (CS) and alloy morphologies.

¹ Contribution of NIST, an agency of the U.S. government; not subject to copyright in the United States.

Figure S2: Effect of monometallic iron and nickel nanoparticles over time in water and in a 1 g/L stock dye solution.

Figure S3. Mass spec detection of Orange G over time for all NiFe morphologies (alloy and core shell) and molar ratios (2:10, 5:10, and 10:10 NiFe).

Table S2. Investigation of Or	ange G degradati	on percent from n	nass spec data a	as compared to
color removal from UV-vis sp	pectrophotometry			

Nanoparticles	Orange G Degradation	Orange G Removal
	$(\%)^*$	$(\%)^{**}$
Ni ₂ Fe ₁₀ CS	99.6	66.3
Ni ₅ Fe ₁₀ CS	99.9	89.4
Ni ₁₀ Fe ₁₀ CS	99.6	98.3
Ni ₂ Fe ₁₀ Alloy	99.9	97.0
Ni ₅ Fe ₁₀ Alloy	99.4	99.4
Ni ₁₀ Fe ₁₀ Alloy	70.7	98.1

*Mass spec

**UV-vis data

Figure S4. TEM images of core shell nanoparticles a) Ni_5Fe_{10} before testing, b) Ni_5Fe_{10} after testing, c) $Ni_{10}Fe_{10}$ before testing, and d) $Ni_{10}Fe_{10}$ after testing. SEM images of alloy nanoparticles e) Ni_5Fe_{10} before testing, f) Ni_5Fe_{10} after testing, g) $Ni_{10}Fe_{10}$ before testing, and h) $Ni_{10}Fe_{10}$ after testing.

Figure S5: Zero order kinetic rate constants for 1000 mg/L alloy particles comparing a) molar ratio, b) particle concentration, and c) reactive shelf life of Ni_5Fe_{10} alloy particles over the last 40 minutes of experiments. Zero order kinetic rate constants for 1000 mg/L core shell particles comparing d) molar ratio, e) particle concentration, and f) reactive shelf life of Ni_5Fe_{10} coreshell particles over the last 40 minutes of experiments.