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NaYF4: Eu+3 nanophosphor/polyvinyl alcohol (PVA) composite nanofibers have been successfully fabricated using the
electrospinning technique. The electrospun polymeric nanofibers were characterized by scanning electron microscopy (SEM),
high-resolution transmission microscopy (HRTEM), X-ray diffraction (XRD), photoluminescence (PL), and Raman
spectroscopy. The flexible polymeric mats exhibited strong red emission at 724 nm at excitation wavelength of 239 nm. 5%
concentration of NaYF4: Eu

+3 nanophosphor are embedded homogenously inside the PVA matrix. The strong red emission
peak attributed to the presence of Eu+3 ions. The characterization of the mats confirmed the uniform dispersion and tunable
photoluminescence properties. These photoluminescent nanofibers (PLNs) could be easily fabricated and potentially useful in
solid-state lighting applications.

1. Introduction

The fascinating one-dimensional (1D) nanostructures have
captured the attention of scientific community because of
their outstanding properties such as high surface area to
volume ratio and flexible and tunable surface morphol-
ogies. The 1D nanofibers have already been prepared by
catalytic synthesis, interfacial polymerization, vapor depo-
sition, vapor-phase transport process, gel spinning, electro-
spinning, self-assembly, template synthesis, melt spinning,
electrostatic spinning and drawing, etc. [1–4]. But the
electrospinning technique is the best choice for nanofiber
fabricators because of its versatile properties. There is no
doubt that this technique is cost-effective, simple, and conve-
nient that utilizes electrostatic forces to fabricate polymeric
exceptionally long and uniform 1D nanofibers with large sur-
face area and high length-diameter ratio [5–8]. It is success-
fully developing continuous and long ultrathin fibers from
polymers, composites of inorganic and organic luminescent
nanoparticles with polymers, metals, and semiconductors,

with diameters ranging from micrometer (μm) to nanometer
(nm). In most of the studies, electrospun nanofibers have
been prepared for the solid-state lighting from various
polymers such as polyvinyl alcohol (PVA), polyacrylonitrile
(PAN), poly(methyl methacrylate) (PMMA), polystyrene
(PS), poly(ethylene oxide) (PEO), polyvinylpyrrolidone
(PVP), polyvinylidene diflouride (PVdF), polyvinylcarbazole
(PVK), poly[2-methoxy-5-(2′-ethylhexyloxy)-p-phenylene
vinylene] (MEH-PPV), and polydiallyldimethylammonium
chloride (PDAC) by using different additives. These poly-
mers are being used to fabricate the light-emitting nanofibers
via the electrospinnig technique. Cadmium sulfide (CdS),
cerium-doped yttrium aluminum garnet (YAG: Ce3+;
Y3−xAl5 O12: Cex

3+), silica nanoparticle (SNP), fullerene
(C60), europium-doped lutetium oxide (Lu2O3:Eu

3+),
europium-doped zirconiumdioxide (ZrO2:Eu

3+), germanium
nanocrystals (Ge-NCs), terbium-doped silicon dioxide
(SiO2:Tb

3+), europium, ytterbium, erbium-doped sodium
yttrium fluoride luminescent composite nanophosphor
(NaYF4: Eu

3+ @ NaYF4: Yb
3+, Er3+), and cyclopentadiene
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derivative AIE-active luminogen have been incorporated into
the different polymer matrices to obtain the luminescent
nanofibers. Carbon nanofibers have been also fabricated from
polyacrylonitrile (PAN) using the electrospinning technique
for optoelectronic devices, biological imaging, and photo-
chemical reaction applications [9–33].

Among many polymers applied in solid-state lighting, it
is decided to focus our attention on polyvinyl alcohol
(PVA) as it is water soluble and biodegradable material. Its
excellent properties such as thermal stability, chemical resis-
tance, biocompatibility, hydrophilicity, emulsifying, adhesiv-
ity, and inexpensiveness make it the material of choice for the
luminescent nanofiber fabrication. PVA is a semicrystalline
fiber, and its aqueous solution appears transparent and
colorless. It also exhibits the unique film forming capability
and nontoxic nature. PVA shows the potential applications
in various fields such as biomedical applications and drug
delivery [34–37]. Recently, researchers have keen interest
in exploring the photoluminescence properties of PVA
with its potential suitability for the electrospun nanofiber
fabrication.

The development of electrospun phtoluminescent nano-
fibers (PLNs) has gained much attention due to their poten-
tial applications in many fields such as solid-state lighting,
nonlinear optical devices, and biological labels [38–42].
The incorporation of functional additives such as nano-
phosphors, nanoparticles, quantum dots, nanocrystals, and
carbon quantum dots into polymeric nanofiber matrix is
stunning which shows distinguishable luminescence, optical,
magnetic, and electrical properties [43–45]. Specially, PLNs
exhibit considerable significance when rare earth ions such
as Eu3+, Er3+, Tb3+, and Tm3+ are doped into polymeric
matrix. These PLNs are widely used in solid-state lighting
applications including solid-state lasers, scintillators, and
planar waveguides. Moreover, these polymeric nanofibers
mats would be exceptionally interesting and fascinating
structures because of their unique properties such as
mechanical flexibility and very light weight [46–48]. It is
observed that no studies have been done on fabrication of
photoluminescent electrospun nanofibers of polyvinyl alco-
hol (PVA) with doping of NaYF4: Eu+3 nanophosphor.
Therefore, in the present paper, NaYF4: Eu+3 nanopho-
sphor/polyvinyl alcohol (PVA) composite nanofibers were
prepared using electrospinning technique with different
concentrations of NaYF4: Eu

+3 nanophosphor. Herein, we
also focus on the morphology and photoluminescence
properties of composite nanofibers at room temperature.
The produced photoluminescent nanofibers (PLNs) would
have potential usage in the solid-state lighting applications.

2. Experimental Methods

2.1. Materials. The rare earth yttrium oxide (Y2O3) and euro-
pium oxide (Eu2O3) of 99.99% purity have been used for the
proposed study. Including sodium fluoride (NaF) (99.9%),
sodium hydroxide (NaOH), hydrochloric acid (HCL), etha-
nol, distill water, and polyvinyl alcohol (PVA), all chemicals
were of analytical grade and used without further purification
in the experiment.

2.2. Synthesis of NaYF4: Eu
+3 Nanophosphor. Eu2O3 and

Y2O3 were dissolved in dilute HCl @ 60°C under constant
magnetic stirring separately to prepare the stock solutions.
2ml of 0.5M sodium fluoride (NaF) solution is prepared in
deionized water in a three neck flask and 2ml chlorizated salt
YCl3; EuCl3 aqueous solution also introduced in same flask.
In a typical synthesis, NaOH (1.5 g) was mixed in ethanol
(40ml), which was added drop wise into three neck flask
solutions with the help of burette under the constant
magnetic stirring at 40°C. Reaction is kept under vigorously
stirring for 1 h. At the end of the reaction, white colloidal pre-
cipitates were transferred to a 50ml autoclave and heated at
180°C for 24 h. The autoclave was allowed to cool at room
temperature, and precipitates were collected by centrifuga-
tion at 5000 rpm and washed with distilled water in sequence
and dried in incubator at 100°C for 12h. NaYF4: Eu

+3 nano-
phosphor was further used to fabricate the polymeric nanofi-
ber mat of polyvinyl alcohol (PVA).

2.3. Electrospinning. The polymeric photoluminescent nano-
fibers (PLNs) have been fabricated via the electrospinning
technique by using NaYF4: Eu

+3 nanophosphor and PVA.
Figure 1 shows the schematic diagram for fabrication process
of PLNs. As-prepared 20mg NaYF4: Eu

+3 nanophosphor was
dispersed in 4.6 g distilled water by ultrasonication for 1 h.
Further, 400mg PVA was introduced into the dispersed solu-
tion with a magnetic bead into the dispersed solution and
kept under continuous stirring at room temperature for
16 h. The concentration of nanophosphor in solution was
kept 5% with respect to PVA. Therefore, the homogeneous
solution was achieved, which was filled in a 5ml disposal
syringe having a needle of nozzle size 24G. A 13 × 14 cm
aluminum sheet was wrapped on collector to get the well-
aligned nanofibers. The syringe was placed at the stand
of the electrospinning machine (ESPIN-NANO PICO,
Chennai) to fabricate the electrospun nanofiber mat with
parameters; distance between needle and collector 20 cm,
flow rate 0.3ml/h, collector speed 2000 rpm, and voltage of
15 kV. Consequently, well-aligned nanofibers were obtained
on aluminum sheet which was wrapped on collector. Varied
concentrations of nanophosphor (3, 5, and 8%) were used to
fabricate the nanofiber mat.

3. Results and Discussion

3.1.Morphology of NaYF4: Eu
+3/Polyvinyl Alcohol Nanofibers.

The morphology of electrospun fibers was characterized by
scanning electron microscopy (SEM) using model ZEISS
EVO 18. The morphology of well-aligned electrospun fibers
can be seen easily in SEMmicrographs, which depend directly
upon the experimental set up of electrospinning machine.
Model JEOL 2100F of high-resolution transmission micros-
copy (HRTEM) was used for further characterization of
nanofibers. We cannot ignore the certain parameters which
can affect the morphology of fibers during the experiment
such as viscosity, conductivity, and concentration of the
solutions as well as applied voltage, flow rate, collector
speed, and distance between the needle of the syringe
and collector. Figures 2(a)–2(c) show the SEM images of
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NaYF4: Eu
+3/polyvinyl alcohol nanofibers @ 5%, respec-

tively. Figure 2(d) is the HRTEM image of nanofibers which
reveals that the nanophosphors were embedded homoge-

neously inside the PVA mat. The nanofibers were collected
from the collector whose diameters were found to be in
between 166nm and 487nm. Since the nanophosphor has
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Figure 1: Schematic diagram for fabrication of polymeric photoluminescent nanofibers (PLNs) using electrospinning technique.

(a) (b)

(c) (d)

Figure 2: (a–c) show the SEM image of NaYF4: Eu
+3/poly vinyl alcohol nanofibers @ 5%, and (d) shows the HRTEM image of nanofibers and

dotted circle exhibits the presence of particles of nanophosphor inside the nanofibers.
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already been synthesized separately, therefore, the size of
nanofibers does not affect the particle size (~35 nm) of nano-
phosphor. These nanoparticles were impinged successfully in
PVA shell via the electrospinning technique. It is also
observed that nanophosphor was incorporated into the poly-
mer matrices without any change of photoluminescence
properties of nanophosphor during the nanofiber fabrication
via electrospinning. Photoluminescence properties (excita-
tion/emission) can be affected by the use of material which
is being doped into the host lattice of nanophosphor. Herein

NaYF4: Eu
+3 nanophosphor synthesis, Eu is used as a dopant

in NaYF4 host lattice.

3.2. Photoluminescence (PL) of NaYF4: Eu+3/Polyvinyl
Alcohol Nanofibers. Photoluminescence (PL) spectra were
recorded by spectroflurometer model Perkin-Elmer LS 55.
The emission spectrum of NaYF4: Eu

+3/polyvinyl alcohol
nanofibers demonstrates the characteristic sharp peaks at
538 nm and 724nm associated with the 5D0→

7FJ transition
of Eu+3 ion. 5% NaYF4: Eu

+3 was doped into the polyvinyl
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Figure 3: (a) shows the photoluminescence spectra of NaYF4: Eu
+3/polyvinyl alcohol nanofibers upon excitation wavelength of 239 nm, and

(b) shows the CIE color coordinate diagram of nanofibers corresponding to excitation at 239 nm with the values (X = 0:716 and Y = 0:282).
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alcohol to fabricate the nanofibers via electrospinning. These
nanofibers display typical Eu+3 emission transition in the
500–725nm regions [11]. Figure 3(a) shows the photolumi-
nescence spectrum of down shift part of the nanofibers upon
the excitation of 239nm wavelength at room temperature. A
hypersensitive red emission peak at 724nm was observed in
the red spectral region of the photoluminescence emission
spectrum. Sharp red peak was ascribed to the electric dipole
transition of the 5D0→

7F4 transition. The emission peaks at
538nm and 554nm are due to the magnetic dipole transition
of 5D0→

7F0 [49]. It can be seen that magnetic dipole transi-
tion is lower than that the electric dipole transition. The PL
emission spectrum shows that the Eu+3 ions are located at
the noninversion symmetric sites [50–52]. Pure PVA photo-
luminescence emission peaks have been observed at 420nm
and 434nm [34]. It can be observed that NaYF4: Eu

+3 nano-
phosphor has enhanced the photoluminescence properties of
nanofibers up to 724nm. The International Commission on
Illumination (CIE) 1931 has been used to draw the color
space chromaticity diagram for the polymeric nanofibers
at the excitation wavelength of 239nm with the values
X = 0:716 and Y = 0:282. Figure 3(b) represents the CIE
diagram, which suggests the good color quality for under-
standing luminescence properties of the nanofibers contain-
ing Eu3+ ions.

3.3. X-Ray Diffraction (XRD) and Raman Spectra of NaYF4:
Eu+3/Polyvinyl Alcohol Nanofibers. X-ray diffraction charac-
terization of nanofibers was performed by using XRD Rigaku
Japan with X-ray source CuKα (λ = 0:15418 nm). NaYF4:
Eu+3/polyvinyl alcohol nanofibers were collected from alu-
minium foil (Al) which was used as a substrate for fiber
deposition during the fascinating electrospinning technique.
The cubic structure of NaYF4: Eu

+3 nanophosphor has been
decided with the help of JCPDS card no. 77-2042. The
cubic crystal structure of NaYF4 exhibits peaks at angles

2θ = 28:85° (111), 33.17° (200), 47.6° (220), 53.88° (311),
56.76° (222), 69.85° (400), 76.10° (331), and 79° (420) [11].
The XRD pattern of nanofibers is shown in Figure 4(a).
According to JCPDS card no. 53-1857, the two diffraction
peaks are observed at angles 2θ = 19:46° and 22.32° which
are attributed to PVA. The XRD pattern showed the other
broad and sharp peaks at angles 28.96° (111), 33.50° (200),
48° (220), 56° (222), and 69.94° (400). The peaks observed
at angles 38.30°, 44.52°, 65.04°, and 78.18° are attributed to
Al foil [53, 54]. The XRD result shows that the peaks of
nanophosphors are slightly shifted to right side due to the
stress in PVA shell.

Renishaw spectrophotometer (micro-Raman model in
Via Reflex) with λ = 514 nm laser excitation was used to
record the Raman spectra of polymeric nanofiber. Raman
spectra of NaYF4: Eu+3/polyvinyl alcohol nanofibers are
shown in Figure 4(b). The electrospun nanofibers reveal
the broad scattering peaks at 2917 cm-1, 2745 cm-1, and
1428 cm-1 in the spectrum, which confirms the existence
of polyvinyl alcohol (PVA), and the peaks are assigned
to the stretching vibration of CH2, CH, and OH, respectively
[55, 56]. Nanophosphor has a discrete Raman spectrum in
the 2565 to 2202 cm-1 region, which exhibits the stretching
modes of CH2 [57]. The Raman spectra show that the
scattering peaks of PVA are slightly shifted due to uniform
impingement of nanophosphor into the PVA shell.

4. Conclusion

NaYF4: Eu+3/polyvinyl alcohol nanofibers were prepared
successfully by using the electrospinning technique. The
well-aligned photoluminescent nanofibers (PLNs) have aver-
age diameters from 166 to 487 nm. The SEM and HRTEM
micrograph showed that NaYF4: Eu+3 nanophosphor is
mixed homogenously in the PVA matrix. The nanofibers
exhibited considerable effect on its PL properties because of
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Figure 4: (a) shows the XRD pattern, and (b) shows the Raman spectra of NaYF4: Eu
+3/polyvinyl alcohol nanofibers.
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the strong coordination interaction between nanophosphor
and PVA. The enhanced intensity ratios 5D0⟶

7F0 to
5D0⟶

7F4 of the nanofibers showed more polarized chemi-
cal environment of Eu+3 ions. The PL spectra of NaYF4:
Eu+3/PVA nanofibers displayed the strong red emission
due to its high emission intensity. These nanofibers are
the best choice to illuminate the white light in solid-state
lighting world.
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