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Anodization: Toward Photocatalytic Application
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In this study, a self-organized nanotubular titanium dioxide (TiO2) array was successfully produced by anodizing pure titanium in a
mixture of glycerol, distilled water (8% vol.), and ammonium fluoride using a dual electrode system. The size control and
distribution of the nanopores were performed in a DC voltage range varying from 30V to 60V. The diameter of TiO2
nanopores varies from 59 to 128 nm depending on the anodizing voltage. Energy-dispersive X-ray spectroscopy (EDX) analysis
reveals that the as-prepared films are essentially composed of TiO2. According to the X-ray diffraction (XRD) and Raman
spectroscopy analysis, the nanotubular arrays of TiO2 annealed at 600°C for 2 hours are composed of a phase mixture of anatase
and rutile. Mott-Schottky analysis showed that the TiO2 nanotubes are consistent with an n-type semiconductor with a donor
density of about 1017 cm-3. Preliminary results on the photocatalytic degradation of a pharmaceutical pollutant showed that the
TiO2 nanotubes can be used as a promising material for application in wastewater treatment.

1. Introduction

Recently, owing to the diverse application of titanium dioxide
TiO2, a thorough research and experiments have been
devoted to the preparation of titanium dioxide TiO2 and
the considerable number of parameters determining its for-
mation. There is a vast amount of literature on the titanium
dioxide application such as photoelectrochemical water
splitting [1], water [2, 3] and air purification [4], solar energy
conversion [5], medical applications [6], gas sensors [7], and
supercapacitors [8]. These applications rely on the specific
semiconductor nature of TiO2, in particular anatase, which
is an n-type semiconductor with a large band gap of about
3.2 eV [9].

In the last years, several techniques have received consid-
erable attention for elaborating TiO2 nanostructures with
promising properties. The most often used methods include

the sol-gel process [10, 11], the electrochemical anodization
of titanium [12], the hydrothermal method [13], and sputter-
ing [14]. Among these methods, titanium anodization is the
most effective way to produce highly ordered nanoporous
TiO2 films [15]. It has been now demonstrated that two types
of TiO2 morphology can be obtained by electrochemical
anodization: compact TiO2 films are generally obtained in
fluoride free electrolytes, whereas porous films can be
prepared in electrolytes containing fluoride ions [16, 17].

The nanostructure of the pores on the titanium surface
obtained by electrochemical anodization is strongly affected
by several parameters, such as applied potential [12, 18, 19],
anodization bath temperature [20], electrolyte composition
[21], anodizing time [12, 19, 22], water content in the electro-
lyte [23, 24], and the fluoride ion concentration [19, 21, 25].

Considerable attention has been directed to study the
mechanism of formation of nanotubular TiO2 films by
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electrochemical anodization. Consequently, a number of the-
ories based on field dissolution [26] and localized acidifica-
tion at the pore bottom that increases chemical dissolution
[27, 28] have been proposed to explain some aspects of the
mechanism related to the TiO2 nanotube formation and
growth.

The synthesis and properties of one-dimensional tubu-
lar arrays have been widely investigated. Lockman et al.
[18] reported that in a mixture of Na2SO4 (1M) and
5wt% NH4F, the diameters and lengths of the nanotubes
increased with increasing anodization voltage from 10V
to 25V and the average diameters of the nanotubes were
about 80nm, 70 nm, and 50nm for anodization voltages
of 20V, 15V and 12V, respectively. Albu et al. [29]
showed that the geometry of the nanotubular layer
depends strongly on the applied potential and the fluoride
concentration. However, Kulkarni et al. [24] studied the
effect of anodization parameters on the morphology of
the TiO2 nanostructure and the mechanism converting
the as-formed nanopores to nanotubes.

Very little work has been carried out on the anodiza-
tion of titanium in glycerol. Indeed, Sreekantan et al.
[30] have stipulated that in glycerol containing 6wt% of
ethylene glycol (EG) and 5wt% NH4F, in the voltage range
from 20 to 60V, the uniform TiO2 nanotubes were
reached with a voltage less than 30V. For a potential up
to 50V, the structure of the anodized titanium tended to
be irregular.

This work reports on the effect of anodization voltage on
the morphology of nanotubular TiO2 on the pure titanium
surface and their electrochemical, structural, optical, and
electrical properties. Different approaches are thoroughly
investigated with the aim of producing a nanotubular
titanium dioxide including current time transients, SEM
along with EDX, X-ray diffraction, Raman spectroscopy,
and impedance measurements.

2. Experimental

2.1. Chemicals. Titanium foil (99.99% pure, 2mm thick),
glycerol (99.8%, anhydrous), ammonium fluoride (98%),
acetic acid (99.98%), HF (40%), H2SO4 (96%), and carbamaz-
epine (99% purity) were purchased from Sigma-Aldrich (St-
Louis, USA).

2.2. Elaboration and Characterization. To obtain reliable
and reproducible results, the pure titanium sample under-
went, before each test, a pretreatment consisting of polish-
ing the electrode surface with an increasingly fine grade
emery paper (SiC #400, #1200, #2000, and #4000),
followed by rinsing with distilled water and then drying
under airflow.

Afterwards, the sample was electrolytically polished in
a solution containing hydrofluoric acid (18% v/v), sulfuric
acid (40% v/v), and acetic acid (42% v/v) at a voltage of
11V for 30 s. Samples are then abundantly rinsed with
distilled water.

The anodization of pure titanium foils was carried out in
an electrolytic bath consisting of a mixture of glycerol-

distilled water (92 : 8% v/v) and ammonium fluoride (0.4M)
for 60min, at a voltage ranging from 30 to 60V, using a
two-electrode cell with the titanium sample as the anode
and a platinum electrode as the counter electrode.

Later with the intention of enhancing the crystallinity of
as-synthesized nanoporous TiO2 films, the anodized samples
were annealed in a muffle furnace at 600°C for two hours
with a heating ramp of 10°C/min.

The electrochemical study was performed in a 0.1M
Na2SO4 solution using a conventional three-electrode cell
consisting of an anodized TiO2 as the working electrode
(WE), a saturated calomel electrode (SCE) as the reference
electrode, and a platinum sheet (4 cm2) as the counter elec-
trode [31]. The measurements were performed using a Volta-
Lab potentiostat (PGZ301) controlled by the VoltaMaster 4
software. To perform the EIS experiments at steady state,
the rotational speed of the stirrer was set at 200 rpm. The
temperature was controlled in jacketed glass at 293K using
a bath thermostat (±1°C). The Mott-Schottky (MS) analysis
was performed at a frequency of 1 kHz in wide voltage range
(from -1V to 1V/SCE).

The morphology of the anodized samples and the ele-
mental composition of the oxide films are examined by scan-
ning electron microscopy (SEM) along with energy-
dispersive X-ray spectroscopy (EDX). The crystal structure
of the oxide films was determined by X-ray diffraction
(XRD) (Rigaku, SmartLab SE, Cu Kα1, λ = 1:5418Å) and
Raman spectroscopy (Confotec MR520) with laser of wave-
length λ = 532 nm. Pore diameter measurement is performed
using the image processing software ImageJ.

The irradiation system used is equipped with an Ultra-
Vitalux lamp at 300W with high-pressure tungsten filament.
A double-jacketed glass reactor allowed maintaining the tem-
perature at 25°C of the solution during the irradiation time.

3. Results and Discussion

3.1. Current Time Transient Measurements. During the
anodizing process, the variation of the current density as
a function of time is monitored. Figure 1 shows the anod-
izing current density/time curves during the anodization at
different potentials. The observed transients share similar
trends. Three stages are typically observed in these curves
related to the typical current density-time curve of the
porous oxide formed under constant voltage. The kinetic
trend consists of an initial fast drop (stage A), a steady
increase (stage B), and a quasisteady state current density
(stage C).

At stage A, the anodizing process begins, and the current
quickly decreases to a minimum value because of the forma-
tion of a high resistance compact oxide layer on the surface
by the interaction of the Ti4+ ions with the oxygen O2- ions
in the electrolyte according to the following reaction [32]:

Ti + 2H2O→ TiO2 + 4e− + 4H+ ð1Þ

At stage B, the current subsequently rises to a maximum
as the pore formation progresses. This is due to the chemical
dissolution of the oxide layer by fluoride ions that is
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promoted by an electric field created between the cell elec-
trodes. Small pits are formed on the surface of the compact
layer followed by the formation of a nanoporous structure
according to the following reaction [32, 33]:

TiO2 + 6F− + 4H+ → TiF−6 + 2H2O ð2Þ

At the final stage, the current density attains a constant
value when a steady state is reached owing to the formation
of TiO2 nanotubes [34].

3.2. Morphological and Composition Characterization. For
the morphological analysis of TiO2 nanotubular layers
formed on the titanium substrate at different potentials, a

Figure 1: Current density/time curves obtained at different anodization potentials.

(a) (b)

(c) (d)

Figure 2: SEM top images and cross-sections of nanotube layers grown in glycerol-distilled water (92 : 8% v/v) and NH4F (0.4M) for 60min
at different anodizing potentials: (a) 30V, (b) 40V, (c) 50V, and (d) 60V.
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scanning electron microscope TESCAN VEGA 3 was used.
SEM top images and cross-sections of nanotube arrays pro-
duced in glycerol-distilled water (92 : 8% v/v) and NH4F
(0.4M) for 60min at different anodizing potentials are given
in Figure 2.

The electrochemical anodization of titanium under these
conditions leads to the formation of an ordered nanotubular
array on the titanium surface. For the anodized sample at
30V, there are areas where the oxide formed is compact. In
addition, other areas have an ordered distribution of
medium-sized nanotubes of about 59 nm in diameter. For
voltages above 30V, the surface of the samples is made up

of neat TiO2 nanotubes. The average diameters of the nano-
tubes are about 80 nm and 128nm for an applied voltage of
40V and 60V, respectively.

In addition, the lengths of the nanotubes were measured
by scanning electron microscope observation of cross-
sections of the films. The result showed that the length of
the TiO2 nanotube obtained on the surface of the titanium
metal increases with the increasing anodization potential to
reach approximately 1.5μm at 60V.

Figure 3 shows the evolution of nanotubular internal
diameter as a function of the anodizing voltage. It is clearly
seen that the nanotube diameter increases linearly with the

Figure 3: The variation of the TiO2 nanotube diameters as a function of the anodizing voltage for 60 minutes in glycerol-distilled water
(92 : 8% v/v) and NH4F (0.4M).

Figure 4: EDS spectrum of TiO2 obtained at 50V for 60 minutes in glycerol-distilled water (92 : 8% v/v) and NH4F 0.4M.
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anodizing potential with a good correlation coefficient R2

that is close to 1 (0.97). It should be noted that for a potential
of 30V, the internal diameter of the nanotubes is about
59 nm, while it reached 128nm for a potential of 60V.

3.3. Composition Analysis by EDX. For the elemental charac-
terization of the obtained nanotubular layers, energy-
dispersive X-ray analysis is conducted using an accelera-

tion voltage of 10 kV. The characteristics of the emitted
X-rays from the anodized substrate produced at different
conditions are presented in Figure 4. The EDX spectrum
indicates the presence of the Tikɑ peak at 4.58 eV and O
peaks at 0.5 eV, as well as F and C peaks in the anodized
sample. The obtained percentages of Ti (26.5 at%) and O
(41.4 at%) yield a Ti/O ratio of about 0.5 indicating that
the structure of the formed oxide is TiO2 with the

Figure 5: XRD spectra of samples anodized at different anodization potentials in glycerol-distilled water (92 : 8% v/v) and NH4F 0.4M.

Figure 6: Raman spectra of anodized simples at different anodization potentials in glycerol-distilled water (92 : 8% v/v) and NH4F 0.4M.
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presence of fluorine that arises from the solution during
the anodization process [35] and carbon which comes
from the metallization process using graphite.

3.4. XRD Structural Characterization. The crystal phases of
as-prepared and annealed samples were identified by XRD
using Cu Kα radiation. As show in Figure 5, the formed
TiO2 nanotubular film consists of a mixture of anatase
and rutile phases. The anatase phase was identified from
the peaks at ca. 25.03°, 48.05°, 54.85°, and 55.30° character-
istic of the planes (101), (200), (105), and (211), respec-
tively, according to JCPDS file no. 21-1272. In addition,
the rutile phase is revealed by peaks at 27.4°, 36.07°, 41°,
43.6°, and 56.9°, corresponding to planes (110), (101),
(110), (111), (210), and (220) (JCPDS card no. 21-1276),
respectively. XRD spectra of annealed oxides reveal that
TiO2 peaks become more intense when the anodizing
potential increases.

The crystallite size is an important factor to determine
the stability of nanotubular TiO2 crystalline phases [1, 36].
The average crystallite size of nanotubular TiO2 samples is
calculated using the Scherrer equation D = 0:9λ/βCosθ,
where D is the grain size, λ (1.548Å) is the wavelength
of X-ray radiation used, θ is the Bragg diffraction angle
obtained from XRD peak, and β is the full width at half
maximum of the diffraction peak [37]. Using the width
of the (101) peak for anatase and the width of the (110)
peak for rutile, crystallite sizes were obtained in the ranges
7.3 to 8.5 nm and 8.2 to 9.7 nm for anatase and rutile
phases, respectively.

On the other hand, the phase composition of TiO2 has a
crucial impact on the photocatalytic activity. The effect of the

anatase/rutile ratio is discussed in many controversial works.
It is reported that a mixture of anatase and rutile phases
was found suitable for photocatalytic oxidation of organic
pollutants in water [38]. Nevertheless, Tayade et al. [39]
suggested that only the anatase phase has attracted consid-
erable attention as a photocatalyst for the chemical treat-
ment of organic pollutants. In our conditions, the
relative amounts of anatase and rutile were estimated at
82% and 18%, respectively. This result is similar to that
for the commercial TiO2, Degussa P25, which exhibits a
strong photocatalytic activity and has an anatase-rutile
mass fraction of 80 : 20.

3.5. Structural Characterization by Raman Microscopy. The
TiO2 films obtained at different anodizing voltages were also
characterized by Raman spectroscopy after thermal anneal-
ing at 600°C. Figure 6 shows the Raman spectra of the differ-
ent anodized samples at different anodization potentials in a
glycerol-distilled water mixture.

For the as-anodized sample, we noticed the absence of
Raman peaks indicating the amorphous nature of the
formed oxide [40]. However, the Raman spectra of all

Figure 7: Mott-Schottky plots obtained for the formed nanotubularTiO2 layers in 0.1M Na2SO4 solution.

Table 1: ND and EFB of anodized samples at different potentials.

Tension (V) EFB (V/SCE) ND × 10−17 (cm-3)

30 -0.13 1.95

40 -0.16 3.37

50 -0.10 2.45

60 -0.14 4.25
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annealed samples depict a similar trend and show a very
intense band at 143 cm-1 and four others at 195, 394,
515, and 637 cm-1. These bands can be attributed to the
vibrational modes Egð1Þ,Egð2Þ,B1g,A1g, orB1g(superposition
ofA1gandB1g), andEg of anatase, respectively. The observed
bands confirm the predominance of anatase as the crystal-
line phase in the structure [41]. However, peaks of about
447 and 619 cm-1 indicate the presence of a certain
amount of rutile and their intensities increase with the
anodizing potential. These vibration modes are shifted by
2 to 4 cm-1 due to the variation in grain size and stoichio-
metric defects present in TiO2 structures as reported by

Bassi et al. [42]. These structural observations are in good
agreement with the XRD analysis.

3.6. Mott-Schottky (MS) Analysis. Electrochemical capaci-
tance measurements were carried out to characterize the
semiconductor nature of the films and to determine the
donor densityND of the formed TiO2 layers, as well as to esti-
mate the flat band potential (EFB) of the anodized samples at
different potentials. MS analysis was performed in Na2SO4
0.1M at 1 kHz in the potential range of -1 to 1V/SCE.
Figure 7 shows the variation of 1/Cs

2 as a function of poten-
tial E (V/SCE).

(a)

(b)

Figure 8: Diagrams of the EIS data obtained for the TiO2: (a) Nyquist representations and (b) Bode representations. The equivalent circuit
used to fit the experimental impedance spectra is inserted into (a).
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As shown in Figure 7, a quasilinear behavior of the vari-
ation of 1/ðCs

2Þ as a function of the potential was observed.
All curves have a positive slope corresponding to an n-type
semiconductor [43]. The parameters ND and EFB can be
determined from the slope of the linear regions in the
Mott-Schottky plot and its intersection with the x-axis,
respectively, according to the Mott-Schottky relationship:

1
C2
S

=
2

ɛ0ɛSeND
E − EFB −

kT
e

� �
, ð3Þ

where CS is the space charge layer capacitance, e the electron
charge (1:60 10−19 C), ɛ0 the permittivity of free space
(8:85 10−14 F cm−1), ɛS the dielectric constant of TiO2 which
is assumed to be 100 F cm-1 [44], E the applied potential, k
the Boltzmann constant (1:38 1023 J K−1), and T the absolute
temperature. The values of the ND and EFB of the different
samples are summarized in Table 1.

Table 1 shows clearly that the ND values increase with
anodizing potential, and the values obtained are in the order
of 1017 cm-3. The ND values obtained are in good agreement
with those reported in the literature for nanotubular TiO2
[45]. Generally, the growth of the anodized oxide films is
always nonstoichiometric with an excess/deficiency of metal
cations or oxygen anions [40]. According to the Point Defect

Model (PDM), the n-type semiconductor behavior of an
anodic passive film indicates that the defects in all samples
are due to the oxygen deficiencies and/or interstitial titanium
ions [46]. Somehow, Peng [47] reported that the predomi-
nance of oxygen deficiency is due to the low formation
energy of oxygen vacancy compared to the interstitial
titanium.

3.7. Electrochemical Impedance Spectroscopy. Electrochemi-
cal impedance spectroscopy (EIS) technique was used to
study the electrochemical behavior of the interface of TiO2
nanotubular film. Figures 8(a) and 8(b) present the Nyquist
and Bode diagrams of the EIS data obtained for the TiO2
films with their fitting adjustments obtained using EC-Lab
software with the suggested equivalent circuit (inset in
Figure 8(a)).

The Bode diagrams of Figure 8(b) reveal the presence of
more than two time constants in the lower and intermediate
frequency ranges. This behavior can be attributed to the pres-
ence of an inner compact layer and an outer porous TiO2
nanotube layer [48]. In addition, the decrease in phase angles
at a high frequency is related to the porous nature of the outer
layer [35]. At intermediate frequencies, the spectrum log ∣ z ∣
vs. log(freq) is a straight line with a slope ranging from -0.78
to -0.88 that exhibits capacitive behavior.

Table 2: Parameters obtained by fitting the impedance spectra of the anodized samples at different applied potentials.

Rs
(Ω × cm2)

C1
(μF/m2)

R1
(Ω × cm2)

Q2
(μF × s a−1ð Þ)

a2
R2

(kΩ × cm2)
Q3

(mF × s a−1ð Þ)
a3

R3
(kΩ × cm2)

30V 7.74 19.9 127.20 86.18 0.44 4.38 0.55 0.97 9.35

40V 23.08 23.76 25.63 95.42 0.45 1.31 0.11 0.70 21.76

50V 10.13 47.89 7.63 56.64 0.29 1.02 0.23 0.60 5.67

60V 14.99 23.52 2.76 76.49 0.56 4.31 0.92 0.68 19.65

TiO2 (60V)
Without TiO2

Figure 9: Photocatalytic activity of TiO2 nanotubular- (formed at 60V and annealed at 600°C) simulated sunlight irradiation (300W).
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The Nyquist diagrams shown in Figure 8(a) represent
incomplete semicircles at low frequencies. Different equiva-
lent circuits have been proposed in the literature to model
the TiO2/electrolyte interface [40, 49]. In our case, Nyquist
spectra are adjusted using the following equivalent electrical
circuit as Rs + C1/ðR1 +Q2/R2 +Q3/R3Þ.

The proposed equivalent circuit takes into account the dif-
ferent time constants. The TiO2/electrolyte interface can be
represented by the Helmholtz capacitance (C1). As shown in
the equivalent circuit, this capacitance (C1) is in parallel with
a resistance coupled to the constant phase element (R2/Q2)
and (R3/Q3), corresponding, respectively, to the porous (outer)
and barrier (inner) layer. Constant phase elements (Q) are used
to take into account the surface heterogeneity, nonideality of
capacitance, and frequency dispersion [50, 51]. The values of
the circuit elements are summarized in Table 2.

For all the studied potentials, the calculated Rs and C1
parameters vary slightly compared to the other parameters. It
is interesting to note that the resistance of the barrier layer R3
is higher than R2 of the nanotubes. The a2 values of the tubular
layers are ranging from 0.29 to 0.56, while the a3 values of the
barrier layers are between 0.60 and 0.97 for all samples which
can be associated with a distribution of relaxation times due
to the heterogeneities at the surface. The a2 values indicate that
the tubular layers of all samples have a nonideal capacitive
behavior. Values in the order of 0.30 and 0.50 have been
reported in the literature for porous materials [52].

3.8. Photocatalytic Activity. To value the photocatalytic activ-
ity of nanoporous TiO2 formed in our conditions, the TiO2
nanotube arrays formed at 60V and annealed at 600°C are
evaluated for the degradation of a pharmaceutical pollutant
known for its photochemical stability, carbamazepine (CBZ)
[49]. Figure 9 shows the degradation curve of CBZ in an aque-
ous solution with an initial concentration of 5ppm in the pres-
ence of the TiO2 nanotubes and under simulated sunlight
irradiation (300W). As it can be clearly observed, the anod-
ized TiO2 in these conditions can effectively degrade 96% of
CBZ within 10h of irradiation. This may be due to their large
surface area the TiO2 nanotubes and to their crystalline size
and phase composition. Under these anodization conditions,
TiO2 nanotube arrays were characterized by a pore diameter
of 128nm, a tube depth of 1.5μm, and a maximum donor
charge of about 4.251017 cm-3. With this tube length, in com-
bination with minimal radial dimensions, the incident illumi-
nation can be effectively captured near the surface of the
nanotubes, providing facile separation of a photogenerated
charge. Our results are promising, and further work is under-
way to study the influence of other parameters on the photo-
catalytic activity of titanium dioxide nanotubes.

4. Conclusion

The electrochemical anodizing method was used to produce
amorphous TiO2 nanotubes converted by annealing into crys-
talline nanotubes. The nanotubes of significantly different
diameters were obtained in a voltage range from 30V to 60V.
The variation in anodizing voltage did not modify the chemical
composition of the TiO2. In addition, their crystalline structure

shows the presence of a mixture of anatase and rutile phases.
The electrochemical study reveals that the oxide formed under
these conditions is an n-type semiconductor with a donor den-
sity on the order of 1017 cm-3. Our results are promising, and
further work is underway to study of the photocatalytic proper-
ties of the produced titanium oxide nanotubes.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Additional Points

Highlights. (i) Nanotubular titanium dioxide (TiO2) array was
produced by the anodization method; (ii) applied potential
significantly affects the nanotube diameter; (iii) the anodic
TiO2 was analyzed by SEM, XRD, Raman spectra, Mott-
Schottky analysis, and EIS measurements; (iv) photocatalytic
degradation of a pharmaceutical pollutant was achieved.
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