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The mass and heat transport of Casson nanofluid flow in a channel under the influence of the magnetic field, heat generation,
chemical reaction, ramped concentration, and ramped temperature is studied. Nanoparticles of copper (Cu) are inserted in
sodium alginate (SA) to make nanofluid. The definition of time-fractional Caputo derivative is applied to have the fractional
model. The analytical results of concentration, temperature, velocity, skin friction, Sherwood numbers, and Nusselt numbers
for ramped and isothermal boundary conditions are obtained in the form of summation after applying the Laplace inverse
transform. The effects of the fractional parameter (ξ) and physical parameters are depicted graphically. For higher values of ξ
the velocity, concentration and temperature reduce. The fractional model is a better choice to control velocity, concentration,
and temperature profiles. The energy enhances by increasing volume fraction (ϕ), whereas mass and flow of nanofluid reduce.
The Sherwood and Nusselt numbers for both isothermal and ramped conditions increase by increasing ϕ. Ramped conditions
can control the flow, mass, and heat of the nanofluid.

1. Introduction

Non-Newtonian fluids have attracted several scientists and
researchers due to their industrial applications such as cos-
metics, synthetic lubricants, clay coating, certain oils, paint,
synthetic lubricants, certain oils, biological fluids, pharma-
ceuticals, and drilling muds. The flow features of non-
Newtonian cannot be defined briefly by the Navier-Stokes
equation due to the complex formulation of the problem.
Thus, according to qualities, different models of non-
Newtonian fluids are categorized such as Seely, Bulky, Jeffry,
Eyring-Powell, Oldroyd-B, Burger, Oldroyd-A, Carreau,
Maxwell, and Casson. For the expectancy of flow tendency
of balanced pigment oil, Casson [1] introduced the model
of Casson fluid in 1959. Casson fluid is a shear-thinning
fluid with endless and zero viscosity at zero and infinite
shear, respectively [2]. Tomato sauce, jelly, human blood,
soup, and honey are examples of Casson fluids.

Many researchers and scientists are investigating
nanofluids due to their common uses in industrial and
engineering fields. They have revealed the significant ther-
mal characteristics and ways to boost the thermal con-
ductivity of nanofluids. The addition of nanofluids and
biotechnological apparatus may give proficient applica-
tions in agriculture, pharmaceuticals, and biosensors. Sev-
eral nanomaterials are used in biotechnology, for instance,
nanowires, nanostructures, nanoparticles, and nanofibers.
The significance of microfluidics and nanofluids is unques-
tionable in biomedical devices. MHD nanofluids have mag-
netic and liquid characteristics; it has several applications,
for instance, optical controls, modulators, and adjustable
fiber filters. Magnetic nanoparticles are very significant for
the treatment of cancer in medicine. The researchers are
using nanofluids to improve the efficiency of and thermal
conductivity of conventional fluids [3–6]. Zari et al. [7]
numerically investigated Casson nanofluid flow on an
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inclined plate with double stratification. Ali et al. [8] dis-
cussed the numerical results of Carreau flow of Casson
nanofluid with magnetohydrodynamics. Shafiq et al. [9]
analyzed Casson nanofluid flow on a rotating disk.

Daily life problems frequently have arbitrary wall condi-
tions. It is practical to study such problems in which wall
temperature changes step-wise. Researchers are making a
lot of efforts to investigate such problems. The flow of heat
in fluids demonstrates a vital role in extensive engineering
and industrial procedures, such as nuclear operations, gas
turbines, processes of heating and cooling, scheming of
devices, and supervision of high-tech thermal systems. The
studies of the flow of MHD nanofluid with ramped concen-
tration and temperature conditions in the literature cur-
rently are not discussed analytically in detail due to its
complicated relations. Hayday et al. [10], Schetz [11], and
Malhotra et al. [12] have established the idea of ramped tem-
perature. The most significant use of ramped heat is to raze
cancer cells during thermal therapy. Ramped conditions
help to control the temperature rise caused by natural condi-
tions [13]. The impact of ramped heating on an incompress-
ible visually thin fluid flow above a plate was examined by
Das et al. [14]. Nandkeolyar et al. [15] evaluated and com-
pared MHD natural convection flow and diverse movements
of the plate having uniform velocity, periodic acceleration,
and single acceleration due to ramped and constant bound-
ary conditions. Seth et al. [16–19] investigated mass and heat
transport in the existence of various parameters like chemi-
cal reaction, heat absorption, Darcy’s law, thermal radiation,
porous medium, and Hall current with ramped concentra-
tion and temperature on a vertical plate. Zin et al. [20] ana-
lyzed the effects of ramped temperature, thermal radiation,
and magnetic field on the natural convection Jeffrey fluid
flow.

Narahari [21] investigated the effects of ramped heating
and thermal radiation through a channel. Khalid et al. [22]
compared the ramped and isothermal boundary conditions
of convective nanofluid flow. Mahanthesh et al. [23] evalu-
ated the analytical results of nanofluid flow over a plate in
the existence of heat generation and magnetic field. Jha
and Gambo [24] examined mass and heat transport of tran-
sient free convective flow affected by the Dufour and Soret
effect through a channel with ramped temperature and con-
centration. Arif et al. [25] studied fractionalized Casson fluid
flow on a plate with ramped concentration and temperature.
Anwer et al. [26] discussed MHD Oldroyd-B convective flow
of nanofluid with ramped velocity and ramped temperature.
The MHD Casson nanofluid flow with ramped concentra-
tion and temperature through a channel is not investigated
in literature yet.

The mathematical models described by fractional differ-
ential equations are useful because such models include the
memory effects, therefore offering more information regard-
ing the complex diffusive processes. Also, for some experi-
ments, the adequate fractional model could be chosen that
gives the best agreement between analytical results and those
experimental. Therefore, researchers are using fractional
models instead of classical ones to meet the growing demand
of modern technology. Fractional calculus is very effective in

diffusion, electrochemistry, relaxation processes, and visco-
elasticity. Fractional models help to understand memory
and hereditary properties that were not possible with inte-
gral models. Fractional models are applicable in modern sci-
ences like mathematical biology, applied sciences, physics,
and fractals. Various definitions of fractional derivatives
are available in the literature. Riemann-Liouville defined
Caputo derivative [27] for physical problems like viscoelas-
ticity, electrohysteresis, and damage and fatigue. Riemann-
Liouville [28] used fractional derivatives to solve complex
problems. For example, the nonzero result fractional deriva-
tive of constant.

Motivated by the above literature focus of this work is to
scrutinize the results of chemical reaction, heat generation,
and magnetic force with ramped concentration and temper-
ature unsteady flow of Casson nanofluid. The nanofluid is
prepared by adding nanoparticles of Cu into SA. The analyt-
ical results of velocity, skin friction, temperature, Nusselt
numbers, concentration, and Sherwood numbers for isother-
mal and ramped wall boundary conditions are calculated by
using the Laplace transform. The significant results are illus-
trated graphically and discussed in detail.

2. Mathematical Model

Consider the Casson nanofluid flow through a vertical chan-
nel with heat and mass transport under the effect of mag-
netic force, chemical reaction, and heat generation. The
nanoparticles of Cu are suspended uniformly into SA. Ini-
tially, the walls of the channel and nanofluid are at rest at
fixed temperature fTl and concentration fCl at ~t = 0. At time
~t = 0+, the concentration and temperature of the left wall rise
momentarily to fCl + ðfC0 −fCl Þ~t/et0 and fTl + ðfT0 −fTl Þ~t/et0,
respectively, for 0 <~t < et0; the concentration and temperature
are maintained at C0 and T0 when ~t > et0: The initial concen-
tration fCl and temperature fTl will remain unchanged on
the right wall at ~y = l. A constant magnetic force B0 is applied
perpendicularly on the left wall externally (see Figure 1).

Thermophysical characteristics SA and Cu are assumed
constant and shown in Table 1. The slippage between SA
and Cu is negligible due to thermal equilibrium. The addi-
tion of nanoparticles of Cu in SA makes the fluid thick
and reduces the flow.

By the above assumptions, the governing equations of
unsteady flow are [31, 32]

ρnf
∂~u ~y,~t
� �
∂~t

= μnf 1 + 1
γ

� � ∂2~u ~y,~t
� �
∂~y2

+ g ρβCð Þnf ~C ~y,~t
� �

−fCl

� �
+ g ρβTð Þnf ~T ~y,~t

� �
−fTl

� �
− σnf B0

2~u ~y,~t
� �

,

ð1Þ

ρcp
� �

nf

∂~T ~y,~t
� �
∂~t

= knf
∂2~T ~y,~t

� �
∂~y2

+Q0 ~T ~y,~t
� �

−fTl

� �
, ð2Þ

∂~C ~y,~t
� �
∂~t

=Dnf
∂2~C
∂~y2

− KC
~C ~y,~t
� �

−fCl

� �
, ð3Þ
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with corresponding initial and boundary conditions

~u ~y, 0ð Þ = 0, ð4Þ

~T ~y, 0ð Þ =fTl , ð5Þ

~C ~y, 0ð Þ =fCl , ð6Þ

0 ≤ ~y ≤ l, ð7Þ

~u 0,~t
� �

= 0, ~T 0,~t
� �

=
fTl + fT0 −fTl

� � ~tet0 , 0 <~t ≤ et0,
fT0, ~t > et0,

8><>:
ð8Þ

~C 0,~t
� �

=
fCl + fC0 −fCl

� � ~t
t0
, 0 <~t ≤ et0,

fC0, ~t > et0,
8><>: ð9Þ

~u l,~t
� �

= 0, ð10Þ

~T l,~t
� �

=fTl , ð11Þ

~C l,~t
� �

=fCl : ð12Þ

The expressions of nanofluid are defined by [33, 34].

μnf
μf

= 1
1 − ϕð Þ2:5 ,

ρnf
ρf

= 1 − ϕð Þ + ϕ
ρs
ρf

,

ρcp
� �

nf

ρcp
� �

f

= 1 − ϕð Þ + ϕ
ρcp
� �

s

ρcp
� �

f

,

ρβTð Þnf
ρβTð Þf

= 1 − ϕð Þ + ϕ
ρβTð Þs
ρβTð Þf

,

ρβCð Þnf
ρβCð Þf

= 1 − ϕð Þ + ϕ
ρβCð Þs
ρβCð Þf

,

Dnf = 1 − ϕð ÞDf ,

σnf

σf
= 1 +

3 σs/σf

� �
− 1

� �
ϕ

σs/σf

� �
+ 2

� �
− σs/σf

� �
− 1

� �
ϕ

" #
,

knf
kf

=
ks + 2kf − 2ϕ kf − ks

� �
ks + 2kf + ϕ kf − ks

� �" #
: ð13Þ

Introducing the dimensionless parameters, functions,
and variables,

u = ~u
U0

, ð14Þ

t =
~tet0 ,

et0 = l2

vf
,

y = ~y
l
,

θ =
~T −fTlfT0 −fTl

,

C =
~C −fClfC0 −fCl

,

ψ1 =
1

1 − ϕð Þ2:5
ρf

ρnf
1 + 1

β

� �
,

ψ2 =Gm
βCð Þnf
βCð Þf

,

ψ3 = Gr
βTð Þnf
βTð Þf

,

ψ4 =M
σnf ρf

σf ρnf
,

ψ5 =
1
Pr

knf ρcp
� �

f

kf ρcp
� �

nf

,

ψ6 =Q
ρcp
� �

f

ρcp
� �

nf

,

ψ7 =
1 − ϕ

Sc
,

ψ8 = K = KCl
2

vf
,
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g βCð Þf C0 − Clð Þd2

U0vf
,

x

g

l

z
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Figure 1: Flow geometry.
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Gr =
g βTð Þf T0 − Tlð Þd2

U0vf
,

M =
σf B0

2l2

μf
,

Q = Q0l
2

ρcp
� �

f
νf

,

Pr =
ρcp
� �

f
vf

kf
,Sc =

vf
Df

: ð15Þ

By substituting equation (15) to equations (1)–(12), we get

∂u y, tð Þ
∂t

= ψ1
∂2u y, tð Þ

∂y2
+ ψ2C y, tð Þ + ψ3θ y, tð Þ − ψ4u y, tð Þ,

ð16Þ

∂θ y, tð Þ
∂t

= ψ5
∂2θ y, tð Þ

∂y2
+ ψ6θ y, tð Þ, ð17Þ

∂C y, tð Þ
∂t

= ψ7
∂2C y, tð Þ

∂y2
− ψ8C y, tð Þ: ð18Þ

u y, 0ð Þ = 0, θ y, 0ð Þ = 0, C y, 0ð Þ = 0, 0 ≤ y ≤ 1, ð19Þ
u 0, tð Þ = 0,

θ 0, tð Þ = C 0, tð Þ =
t, 0 < t ≤ 1,
1, t > 1,

(
=H tð Þt −H t − 1ð Þ t − 1ð Þ,

ð20Þ
u 1, tð Þ = 0,
θ 1, tð Þ = 0,
C 1, tð Þ = 0:

ð21Þ

The researchers used Caputo time-fractional derivatives of
order ξ to develop fractional models in equations (16)–(18).

Dt
ξu y, tð Þ = ψ1

∂2u y, tð Þ
∂y2

+ ψ2C y, tð Þ + ψ3θ y, tð Þ − ψ4u y, tð Þ,

ð22Þ

Dt
ξθ y, tð Þ = ψ5

∂2θ y, tð Þ
∂y2

+ ψ6θ y, tð Þ, ð23Þ

Dt
ξC y, tð Þ = ψ7

∂2C y, tð Þ
∂y2

− ψ8C y, tð Þ: ð24Þ

Where Dξ
t uðy, tÞ represents the time-fractional Caputo

derivative,

Dξ
t u η, τð Þ =

1
Γ 1 − ξð Þ

ðτ
0
τ −wð Þξ ∂u η,wð Þ

∂w
dw, 0 ≤ ξ < 1 ;

∂u η, τð Þ
∂τ

, ξ = 1:

8>><>>:
ð25Þ

3. Solution of the Problem

3.1. Concentration. Applying Laplace transform (LT) to
equations (24), (20)3, and (21)3 and using (19)3, we obtain

ψ7
∂2�C y, sð Þ

∂y2
− sξ + ψ8

� �
�C y, sð Þ = 0, ð26Þ

�C 0, sð Þ = s−2 1 − e−sð Þ,
�C 1, sð Þ = 0:

ð27Þ

The solution of equation (26) subject to equation (27)
gives

�C y, sð Þ = 1 − e−sð Þ
sinh 1 − yð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ + ψ8ð Þ/ψ7

ph i
s2 sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ + ψ8ð Þ/ψ7

ph i : ð28Þ

This expression can be written as

�C y, sð Þ = 1 − e−sð Þ 1
s2−ξ

+ ψ8
s2

� �
� 〠
∞

k=0

e− 2k+yð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ+ψ8ð Þ/ψ7

p

sξ + ψ8
−
e− 2k+2−yð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sξ+ψ8ð Þ/ψ7
p

sξ + ψ8

" #
:

ð29Þ

Taking inverse LT of equation (29), we get

C y, tð Þ = C0 y, tð Þ −H t − 1ð ÞC0 y, t − 1ð Þ, ð30Þ

where

C0 y, tð Þ = 〠
∞

k=0

ðt
0

t − pð Þ1−ξ
Γ 2 − ξð Þ + ψ8 t − pð Þ

 !

� g
2k + yffiffiffiffiffi

ψ7
p , ψ8, p

� �
− g

2k + 2 − yffiffiffiffiffi
ψ7

p , ψ8, p
� �� �

dp,

g a, b, pð Þ =
ð∞
0
e−bu erfc a

2 ffiffiffi
u

p
� � 1

p
Φ 0,−ξ,−up−ξ
� �

du: ð31Þ

Table 1: Thermophysical characteristics of Cu and SA [29, 30].

Material ρ (kg/m3) Cp (J/kg·K) k (W/m·K) β × 105 K−1� �
σ Ωmð Þ−1

Sodium alginate C6H9NaO7(SA) 989 4175 0.6376 0.99 5:5 × 10−6

Copper (Cu) 8933 385 401 1.67 59:6 × 106
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3.2. Temperature Distribution. Applying LT to equations
(23), (20)2, and (21)2 and using (19)2, we obtain

ψ5
∂2θ y, sð Þ

∂y2
− sξ − ψ6

� �
θ y, sð Þ = 0, ð32Þ

θ 0, sð Þ = s−2 1 − e−sð Þ,
θ 1, sð Þ = 0:

ð33Þ

The solution of equation (32) subject to equation (33)
gives

�θ y, sð Þ = 1 − e−sð Þ
sinh 1 − yð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ − ψ6ð Þ/ψ5

ph i
s2 sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ − ψ6ð Þ/ψ5

ph i : ð34Þ

This expression can be written as

�θ y, sð Þ = 1 − e−sð Þ 1
s2−ξ

−
ψ6
s2

� �
� 〠
∞

k=0

e− 2k+yð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ−ψ6ð Þ/ψ5

p

sξ − ψ6
−
e− 2k+2−yð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sξ−ψ6ð Þ/ψ5
p

sξ − ψ6

" #
:

ð35Þ

Taking inverse LT of equation (35), we get

θ y, tð Þ = θ0 y, tð Þ −H t − 1ð Þθ0 y, t − 1ð Þ, ð36Þ

where

θ0 y, tð Þ = 〠
∞

k=0

ðt
0

t − pð Þ1−ξ
Γ 2 − ξð Þ − ψ6 t − pð Þ

 !

� g
2k + yffiffiffiffiffi

ψ5
p ,−ψ6, p

� �
− g

2k + 2 − yffiffiffiffiffi
ψ5

p ,−ψ6, p
� �� �

dp:

ð37Þ

3.3. Velocity Field. Applying LT to equations (22), (20)1, and
(21)1 and using (19)1, we obtain

ψ1
∂2�u y, sð Þ

∂y2
− sξ + ψ4

� �
�u y, sð Þ = −ψ2�C y, sð Þ − ψ3θ y, sð Þ,

ð38Þ

�u 0, sð Þ = 0,
�u 1, sð Þ = 0:

ð39Þ

The solution of equation (38) subject to equation (39) gives

�u y, sð Þ = 1 − e−sð Þ a1
sξ + a2

+ a3
sξ + a4

� � sinh 1 − yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ + ψ4ð Þ/ψ1

ph i
s2 sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ + ψ4ð Þ/ψ5

ph i
− 1 − e−sð Þ a1

sξ + a2

� � sinh 1 − yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ + ψ8ð Þ/ψ7

ph i
s2 sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ + ψ8ð Þ/ψ7

ph i
− 1 − e−sð Þ a3

sξ + a4

� � sinh 1 − yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ + ψ6ð Þ/ψ5

ph i
s2 sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ + ψ6ð Þ/ψ5

ph i :

ð40Þ
This expression can be as

�u y, sð Þ = 1 − e−sð Þ
"

a1 + a3
s2

+ a1 ψ4 − a2ð Þ
s2 sξ + a2
� � + a3 ψ4 − a4ð Þ

s2 sξ + a4
� � !

� 〠
∞

k=0

e− 2k+yð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ+ψ4ð Þ/ψ1

p

sξ + ψ4
−
e− 2k+2−yð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sξ+ψ4ð Þ/ψ1
p

sξ + ψ4

 !

−
a1
s2

+ a1 ψ8 − a2ð Þ
s2 sξ + a2
� � !

〠
∞

k=0

 
e− 2k+yð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sξ+ψ8ð Þ/ψ7
p

sξ + ψ8

−
e− 2k+2−yð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sξ+ψ8ð Þ/ψ7
p

sξ + ψ8

!
−

a3
s2

−
a3 ψ6 + a4ð Þ
s2 sξ + a4
� � !

� 〠
∞

k=0

e− 2k+yð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sξ+ψ6ð Þ/ψ5

p

sξ − ψ6
−
e− 2k+2−yð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sξ+ψ6ð Þ/ψ5
p

sξ − ψ6

 !#
:

ð41Þ
Taking inverse LT of equation (41), we get

u y, tð Þ = u0 y, tð Þ −H t − 1ð Þu0 y, t − 1ð Þ, ð42Þ
where

u0 y, tð Þ = 〠
∞

k=0

ðt
0

a1 + a3ð Þ t − pð Þ + a1 ψ4 − a2ð Þf1 t − pð Þð

+ a3 ψ4 − a4ð Þf2 t − pð ÞÞ
 
g

2k + yffiffiffiffiffi
ψ1

p , ψ4, p
� �

− g
2k + 2 − yffiffiffiffiffi

ψ1
p , ψ4, p

� �!
dp − 〠

∞

k=0

ðt
0
ða1 t − pð Þ

+ a1 ψ8 − a2ð Þf1 t − pð ÞÞ
 
g

2k + yffiffiffiffiffi
ψ7

p , ψ8, p
� �

− g
2k + 2 − yffiffiffiffiffi

ψ7
p , ψ8, p

� �!
dp − 〠

∞

k=0

ðt
0
ða3 t − pð Þ

− a3 ψ6 + a4ð Þf2 t − pð ÞÞ
 
g

2k + yffiffiffiffiffi
ψ5

p ,−ψ6, p
� �

− g
2k + 2 − yffiffiffiffiffi

ψ5
p ,−ψ6, p

� �!
dp,
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f1 tð Þ =
ðt
0
wξEξ,ξ+1 −a2w

ξ
� �

dw,

f2 tð Þ =
ðt
0
wξEξ,ξ+1 −a4w

ξ
� �

dw:

ð43Þ

3.4. Sherwood Numbers, Skin Friction, and Nusselt Numbers.
Skin friction at y = 0 is defined as

Cf0
= −

μnf
μf

∂u y, tð Þ
∂y

				
y=0

= − 1 − ϕð Þ−2:5L−1 ∂�u y, sð Þ
∂y

				
y=0

( )
:

ð44Þ

By using equation (41) in equation (44),

Cf0
= 1

1 − ϕð Þ2:5 u1 tð Þ −H t − 1ð Þu1 t − 1ð Þ½ �, ð45Þ

where

u1 tð Þ = 1ffiffiffiffiffi
ψ1

p 〠
∞

k=0

ðt
0

a1 + a3ð Þ t − pð Þ + a1 ψ4 − a2ð Þf1 t − pð Þð

+ a3 ψ4 − a4ð Þf2 t − pð ÞÞ
 
L′ kffiffiffiffiffi

ψ1
p , ψ4, p
� �

+ L′ k + 1ffiffiffiffiffi
ψ1

p , ψ4, p
� �!

dp −
1ffiffiffiffiffi
ψ7

p 〠
∞

k=0

ðt
0
ða1 t − pð Þ

+ a1 ψ8 − a2ð Þf1 t − pð ÞÞ
 
L′ kffiffiffiffiffi

ψ7
p , ψ8, p
� �

+ L′ k + 1ffiffiffiffiffi
ψ7

p , ψ8, p
� �!

dp −
1ffiffiffiffiffi
ψ5

p 〠
∞

k=0

ðt
0
ða3 t − pð Þ

− a3 ψ6 + a4ð Þf2 t − pð ÞÞ
 
L′ kffiffiffiffiffi

ψ5
p ,−ψ6, p
� �

+ L′ k + 1ffiffiffiffiffi
ψ5

p ,−ψ6, p
� �!

dp,

L′ a, b, pð Þ =
ð∞
0

1ffiffiffiffiffiffiffi
πw

p e− a2/4wð Þ+bwð Þ 1
p
Φ 0,−ξ,−wp−ξ
� �

dw:

ð46Þ

Skin friction at y = 1 is defined as

Cf1
= −

μnf
μf

∂u y, tð Þ
∂y

				
y=1

= − 1 − ϕð Þ−2:5L−1 ∂�u y, sð Þ
∂y

				
y=1

( )
:

ð47Þ

By using equation (41) in equation (47),

Cf1
= 1

1 − ϕð Þ2:5 u2 tð Þ −H t − 1ð Þu2 t − 1ð Þ½ �, ð48Þ

where

u2 tð Þ = 1ffiffiffiffiffi
ψ1

p 〠
∞

k=0

ðt
0

a1 + a3ð Þ t − pð Þ + a1 ψ4 − a2ð Þf1 t − pð Þð

+ a3 ψ4 − a4ð Þf2 t − pð ÞÞ 2L′ 2k + 1ffiffiffiffiffi
ψ1

p , ψ4, p
� �� �

dp

−
1ffiffiffiffiffi
ψ7

p 〠
∞

k=0

ðt
0
a1 t − pð Þ + a1 ψ8 − a2ð Þf1 t − pð Þð Þ

� 2L′ 2k + 1ffiffiffiffiffi
ψ7

p , ψ8, p
� �� �

dp −
1ffiffiffiffiffi
ψ5

p

� 〠
∞

k=0

ðt
0
a3 t − pð Þ − a3 ψ6 + a4ð Þf2 t − pð Þð Þ

� 2L′ 2k + 1ffiffiffiffiffi
ψ5

p ,−ψ6, p
� �� �

dp:

ð49Þ

Nusselt numbers

Nu0 = −
knf
kf

∂θ
∂y

				
y=0

= −
knf
kf

L−1
∂θ
∂y

					
y=0

8<:
9=;: ð50Þ

By using equation (36) in equation (50),

Nu0 =
knf
kf

θ1 tð Þ −H t − 1ð Þθ1 t − 1ð Þ½ �, ð51Þ

where

θ1 tð Þ = 1ffiffiffiffiffi
ψ5

p 〠
∞

k=0

ðt
0

t − pð Þ1−ξ
Γ 2 − ξð Þ − ψ6 t − pð Þ

 !

� L′ kffiffiffiffiffi
ψ5

p ,−ψ6, p
� �

+ L′ k + 1ffiffiffiffiffi
ψ5

p ,−ψ6, p
� �� �

dp,

ð52Þ

Nu1 = −
knf
kf

∂θ
∂y

				
y=1

= −
knf
kf

L−1
∂θ
∂y

					
y=1

8<:
9=;, ð53Þ

By using equation (36) in equation (53),

Nu1 =
knf
kf

θ2 tð Þ −H t − 1ð Þθ2 t − 1ð Þ½ �, ð54Þ
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where

θ2 tð Þ = 1ffiffiffiffiffi
ψ5

p 〠
∞

k=0

ðt
0

t − pð Þ1−ξ
Γ 2 − ξð Þ − ψ6 t − pð Þ

 !

� 2L′ 2k + 1ffiffiffiffiffi
ψ5

p ,−ψ6, p
� �� �

dp,
ð55Þ

Sh0 = −
Dnf

Df

∂C
∂y

				
y=0

= −
Dnf

Df
L−1

∂�C
∂y

				
y=0

( )
: ð56Þ

By using equation (29) in equation (56),

Sh0 =
Dnf

Df
C1 tð Þ −H t − 1ð ÞC1 t − 1ð Þ½ �, ð57Þ

where

C1 tð Þ = 1ffiffiffiffiffi
ψ7

p 〠
∞

k=0

ðt
0

t − pð Þ1−ξ
Γ 2 − ξð Þ + ψ8 t − pð Þ

 !

� L′ kffiffiffiffiffi
ψ7

p , ψ8, p
� �

+ L′ k + 1ffiffiffiffiffi
ψ7

p , ψ8, p
� �� �

dp,

ð58Þ

Sh1 = −
Dnf

Df

∂C
∂y

				
y=1

= −
Dnf

Df
L−1

∂�C
∂y

				
y=1

( )
: ð59Þ

By using equation (29) in equation (59),

Sh1 =
Dnf

Df
C2 tð Þ −H t − 1ð ÞC2 t − 1ð Þ½ �, ð60Þ

where

C2 tð Þ = 1ffiffiffiffiffi
ψ7

p 〠
∞

k=0

ðt
0

t − pð Þ1−ξ
Γ 2 − ξð Þ + ψ8 t − pð Þ

 !

� 2L′ 2k + 1ffiffiffiffiffi
ψ7

p , ψ8, p
� �� �

dp:

ð61Þ

3.5. Solution of Problem for Isothermal Conditions. For isother-
mal conditions equation (20) becomes θð0, tÞ = Cð0, tÞ = 1, u
ð0, tÞ = 0:

C y, tð Þ = 〠
∞

k=0

ðt
0

t − pð Þ−ξ
Γ 1 − ξð Þ + ψ8

 ! 
g

2k + yffiffiffiffiffi
ψ7

p , ψ8, p
� �

− g
2k + 2 − yffiffiffiffiffi

ψ7
p , ψ8, p

� �!
dp,

θ y, tð Þ = 〠
∞

k=0

ðt
0

t − pð Þ−ξ
Γ 1 − ξð Þ − ψ6

 ! 
g

2k + yffiffiffiffiffi
ψ5

p ,−ψ6, p
� �

− g
2k + 2 − yffiffiffiffiffi

ψ5
p ,−ψ6, p

� �!
dp,

u y, tð Þ = 〠
∞

k=0

ðt
0

a1 + a3ð Þ + a1 ψ4 − a2ð Þ
a2

f3 t − pð Þ
�

+ a3 ψ4 − a4ð Þ
a4

f4 t − pð Þ
� 

g
2k + yffiffiffiffiffi

ψ1
p , ψ4, p

� �

− g
2k + 2 − yffiffiffiffiffi

ψ1
p , ψ4, p

� �!
dp

− 〠
∞

k=0

ðt
0

a1 +
a1 ψ8 − a2ð Þ

a2
f3 t − pð Þ

� �
� g

2k + yffiffiffiffiffi
ψ7

p , ψ8, p
� �

− g
2k + 2 − yffiffiffiffiffi

ψ7
p , ψ8, p

� �� �
dp

− 〠
∞

k=0

ðt
0

a3 −
a3 ψ6 + a4ð Þ

a4
f4 t − pð Þ

� �
� g

2k + yffiffiffiffiffi
ψ5

p ,−ψ6, p
� �

− g
2k + 2 − yffiffiffiffiffi

ψ5
p ,−ψ6, p

� �� �
dp,

ð62Þ

where

f3 tð Þ = a2t
ξEξ,ξ+1 −a2w

ξ
� �

,

f3 tð Þ = a4t
ξEξ,ξ+1 −a4w

ξ
� �

:

ð63Þ

3.6. Sherwood Numbers, Skin Friction, and Nusselt Numbers
(for Isothermal). Skin friction at y = 0 is defined as

Cf0
= 1

1 − ϕð Þ2:5 ffiffiffiffiffi
ψ1

p 〠
∞

k=0

ðt
0

a1 + a3ð Þ + a1 ψ4 − a2ð Þ
a2

f3 t − pð Þ
�

+ a3 ψ4 − a4ð Þ
a4

f4 t − pð Þ
� 

L′ kffiffiffiffiffi
ψ1

p , ψ4, p
� �

+ L′ k + 1ffiffiffiffiffi
ψ1

p , ψ4, p
� �!

dp −
1

1 − ϕð Þ2:5 ffiffiffiffiffi
ψ7

p

� 〠
∞

k=0

ðt
0

a1 +
a1 ψ8 − a2ð Þ

a2
f3 t − pð Þ

� �
� L′ kffiffiffiffiffi

ψ7
p , ψ8, p
� �

+ L′ k + 1ffiffiffiffiffi
ψ7

p , ψ8, p
� �� �

dp

−
1

1 − ϕð Þ2:5 ffiffiffiffiffi
ψ5

p 〠
∞

k=0

ðt
0

a3 −
a3 ψ6 + a4ð Þ

a4
f4 t − pð Þ

� �
� L′ kffiffiffiffiffi

ψ5
p ,−ψ6, p
� �

+ L′ k + 1ffiffiffiffiffi
ψ5

p ,−ψ6, p
� �� �

dp:

ð64Þ
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Figure 2: Variation of concentration.
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Figure 3: Variation of temperature.
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Figure 4: Continued.
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Figure 4: Continued.
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Skin friction at y = 1 is defined as

Cf1
= 1

1 − ϕð Þ2:5 ffiffiffiffiffi
ψ1

p 〠
∞

k=0

ðt
0

 
a1 + a3ð Þ + a1 ψ4 − a2ð Þ

a2
f3 t − pð Þ

+ a3 ψ4 − a4ð Þ
a4

f4 t − pð Þ
!

2L′ 2k + 1ffiffiffiffiffi
ψ1

p , ψ4, p
� �� �

dp

−
1

1 − ϕð Þ2:5 ffiffiffiffiffi
ψ7

p 〠
∞

k=0

ðt
0

a1 +
a1 ψ8 − a2ð Þ

a2
f3 t − pð Þ

� �
� 2L′ 2k + 1ffiffiffiffiffi

ψ7
p , ψ8, p

� �� �
dp −

1
1 − ϕð Þ2:5 ffiffiffiffiffi

ψ5
p

� 〠
∞

k=0

ðt
0

a3 −
a3 ψ6 + a4ð Þ

a4
f4 t − pð Þ

� �
� 2L′ 2k + 1ffiffiffiffiffi

ψ5
p ,−ψ6, p

� �� �
dp:

ð65Þ

Nusselt numbers

Nu0 =
1ffiffiffiffiffi
ψ5

p knf
kf

〠
∞

k=0

ðt
0

t − pð Þ−ξ
Γ 1 − ξð Þ − ψ6

 !

� L′ kffiffiffiffiffi
ψ5

p ,−ψ6, p
� �

+ L′ k + 1ffiffiffiffiffi
ψ5

p ,−ψ6, p
� �� �

dp,

Nu1 =
1ffiffiffiffiffi
ψ5

p knf
kf

〠
∞

k=0

ðt
0

t − pð Þ−ξ
Γ 1 − ξð Þ − ψ6

 !

� 2L′ 2k + 1ffiffiffiffiffi
ψ5

p ,−ψ6, p
� �� �

dp:

ð66Þ

Sherwood numbers

Sh0 =
1 − ϕffiffiffiffiffi
ψ7

p 〠
∞

k=0

ðt
0

t − pð Þ−ξ
Γ 1 − ξð Þ + ψ8

 !

� L′ kffiffiffiffiffi
ψ7

p , ψ8, p
� �

+ L′ k + 1ffiffiffiffiffi
ψ7

p , ψ8, p
� �� �

dp,

Sh1 =
1 − ϕffiffiffiffiffi
ψ7

p 〠
∞

k=0

ðt
0

t − pð Þ−ξ
Γ 1 − ξð Þ + ψ8

 !
2L′ 2k + 1ffiffiffiffiffi

ψ7
p , ψ8, p

� �� �
dp:

ð67Þ

4. Graphical Results and Discussions

In this section, the influences of dimensionless parameters
on fluid flow are discussed. The impact of ramped tempera-
ture, ramped concentration and volume fraction, and frac-
tional and physical parameters on Casson nanofluid in a
channel is analyzed.

For comparison, the graphs of nondimensional concen-
tration, temperature, and velocity profiles corresponding to
Casson parameter ðγÞ, magnetic parameter ðMÞ, nanoparti-
cle volume parameter ðϕÞ, Grashof numbers (Gr and Gr),
Schmidt number ðScÞ, Prandtl number ðPrÞ, heat generation
ðQÞ, chemical reaction ðKÞ, and fractional parameters ðξÞ
are shown in Figures 2–4. In the entire comparison all
Casson parameter, γ = 2:5, ϕ = 0:04, ξ = 0:5, t = 0:8, Pr =
6:2, Gm = 3:6, Gr = 3:5, Q = 0:2, M = 1:5, and K = 0:5 are
fixed except the deviation in the respective figures.

Figures 2(a), 3(a), and 4(a) show the influence of ξ on
concentration, temperature, and velocity fields. Velocity,
concentration, and temperature obtained with derivatives
are the better choice to have controlled results. The concen-
tration, temperature, and velocity profiles reduce for higher
values of ξ with ramped boundary conditions. Figures 2(b),

0.2 0.4 0.6
y

0.8 1

0.15

0.05

0
0

0.1

Ve
lo

ci
ty

 (u
)

Sc=0.2
Sc=0.7

Sc=1.2
Sc=1.7

(i)

0.2 0.4 0.6
y

0.8 1

0.06

0.04

0.02

0.08

0
0

0.1

Ve
lo

ci
ty

 (u
)

K=0.2
K=0.9

K=1.5
K=2.2

(j)

Figure 4: Variation of velocity.
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3(b), and 4(b) depict the influence of ϕ on concentration,
temperature, and velocity profiles. From Figures 2(b) and
4(b), it is noticed that the concentration and velocity of
nanofluid decreases for higher values of ϕ. The increasing
values of ϕ enhance the thickness and dynamic viscosity
that reduce concentration and velocity of the nanofluid.
Figure 3(b) illustrates that the temperature field of nano-
fluid increases due to the collision of nanoparticles for
greater values of volume fraction. Also, the temperature
increases due to the higher thermal conductivity of Cu
nanoparticles.

Figures 2(c) and 4(i) demonstrate that the rise in Sc is
similar to a poor solute diffusion which lets shallower disper-
sion of solute outcome. Consequently, the concentration and
velocity reduce. Thus, the larger of Sc reduces the thickness

of the boundary layer. Figures 2(d) and 4(g) indicate that
the concentration and velocity fields reduce rapidly as K
increases. The solute molecules increase under the influence
of chemical reaction parameter.

Figures 3(c) and 4(g) show the impact of Pr on temper-
ature and velocity. The higher values of Pr increase the vis-
cosity of the nanofluid and reduce the heat transport rate
of the nanofluid that reduces velocity and temperature.
Figures 3(d) and 4(h) illustrate that by increasing Q > 0,
the heat is discharged due to which temperature and velocity
increase.

Figure 4(c) demonstrates the impact of the Casson
parameter on velocity. The flow increases by increasing γ.
Figure 4(d) reflects the influence of magnetic parameter
(M) on the velocity field. An increase in M reduces the
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thickness of the flow boundary and decreases the velocity.
Figures 4(e) and 4(f) show that the velocity increases for
increasing Grashof numbers (Gr and Gm). Grashof numbers
indicate the relative significance of viscous force to buoyancy
force. The viscous effect in velocity reduces by large Grashof
numbers.

Figure 5 illustrates the comparison of velocity, concen-
tration, and temperature with constant and ramped bound-
ary conditions. It established that ramped velocity,
concentration, and temperature are lower than acquired by
isothermal conditions. Thus, the ramped boundary condi-
tions are more stable.

Figure 6 shows the variations in Nusstle and Sherwood
numbers on both plates with ramped and isothermal condi-
tions. The Sherwood numbers decrease and Nusselt num-
bers increase by increasing volume fraction.

Figure 7 illustrates the comparison of present results
with existing results of Ramzan et al. [31]. It is concluded
that in the absence of ϕ, porosity and Dufour effects the
results are identical.

5. Conclusions

An unsteady Casson nanofluid flow within a channel with
ramped concentration and temperature is investigated. Fur-
thermore, chemical reaction, heat generation, and magnetic
effects are considered. The problem is generalized by Caputo
time-fractional derivative, and Laplace transform is used to
find analytical results of ramped and isothermal boundary
conditions. In this work, SA is considered as a base fluid
containing the nanoparticles of Cu. The significant results
for velocity, concentration, temperature, Nusselt numbers,
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and Sherwood numbers are graphically underlined and dis-
cussed in detail.

The major points of this work are as follows:

(i) Velocity, concentration, and temperature are lesser
for ramped boundary conditions than isothermal

(ii) Ramped wall velocity is increasing for greater
values of γ, Gr, Gm, and Q and decreasing for
higher values of ξ, ϕ, M, Pr, Sc, and K

(iii) Ramped wall temperature is decreasing for higher
values of ξ and Pr and decreasing for growing
values of ϕ and Q

(iv) Ramped wall concentration is decreasing for increas-
ing values of ξ, ϕ, Sc, and K

(v) Sherwood and Nusselt numbers both are increasing
function of ϕ for both isothermal and ramped
conditions

(vi) Velocity, concentration, and temperature obtained
with ordinary derivatives are higher than that
obtained by fractional derivatives. Thus, the fractional
derivative is a better choice to have controlled results

(vii) Ramped boundary conditions are useful to manage
velocity, concentration, and temperature profiles
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Figure 7: Comparison of results.
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Appendix

L−1
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 �
= tξ−1

Γ ξð Þ :

ðA1Þ

Nomenclature

~uð~y,~tÞ: Velocity (m s-1)
~Cð~y,~tÞ: Concentration (kgm-3)
~Tð~y,~tÞ: Temperature (K)
Q0: Heat generation coefficient (W m-3 K-1)
k: Thermal conductivity (W m-1 K-1)
g: Gravitational acceleration (m s-2)
Q: Dimensionless heat generation
D: Mass diffusivity (m2 s-1)
R: Chemical reaction coefficient (s-1)
Gm: Mass Grashof number
cp: Specific heat (J kg-1 K-1)
K : Dimensionless chemical reaction
Gr: Thermal Grashof number
Sc: Schmidt number
Pr: Prandtl number
Cf : Skin friction
Sh: Sherwood number
Nu: Nusselt number.

Greek Symbols

γ: Casson parameter
ρ: Density (kg m-3)
βC : Mass volumetric coefficient (m3 kg-1)
ν: Kinematic viscosity (m2 s-1)
βT : Thermal expansion coefficient (K-1)
θ: Dimensionless temperature
μ: Dynamic viscosity (kg m-1 s-1)
ϕ: Nanoparticle volume fraction
σ: Electric conductivity (Ωm)-1.

Subscript

nf : Fluid
nf : Nanofluid
s: Solid particles.
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