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The nanofluids can be used in the subsequent precise areas like chemical nanofluids, environmental nanofluids, heat transfer
nanofluids, pharmaceutical nanofluids, drug delivery nanofluids, and process/extraction nanofluids. In short, the number of
engineering and industrial applications of nanofluid technologies, as well as their emphasis on particular industrial
applications, has been increased recently. Therefore, this exploration is carried out to analyze the nanofluid flow past a rotating
disk with velocity slip and convective conditions. The water-based spherical-shaped nanoparticles of copper, alumina, and
titanium have been considered in this analysis. The modeled problem has been solved with the help of homotopic technique.
Convergence of the homotopic technique is shown with the help of the figure. The role of the physical factors on radial and
tangential velocities, temperature, surface drag force, and heat transfer rate are displayed through figures and tables. The
outcomes demonstrate that the surface drag force of the water-based spherical-shaped nanoparticles of Cu, Al2O3, and TiO2
has been reduced with a greater magnetic field. The radial and tangential velocities of the water-based spherical-shaped
nanoparticles of Cu, Al2O3, and TiO2, and pure water have been augmented via magnetic parameter. The radial velocity of the
water-based spherical-shaped nanoparticle of Cu has been augmented via nanoparticle volume fraction, whereas reduced for
the Al2O3 and TiO2 nanoparticles. The tangential velocity of the water-based spherical-shaped nanoparticles of Cu, Al2O3, and
TiO2 has reduced via nanoparticle volume fraction. Also, the variations in radial and tangential velocities are greater for slip
conditions as compared to no-slip conditions.

1. Introduction

The suspension of nanosized (between 1nm and 100nm)
material into conventional fluids such as oil, ethylene glycol,
water, and sodium alginate is called nanofluids. Nanofluids
with their innovative and advanced ideas have intriguing ther-
mal transfer properties as opposed to traditional heat transfer
fluids. There has been a great deal of research into nanofluids’
dominant heat transfer properties, especially convective heat
transfer and thermal conductivity. With these properties,
nanofluid implementations in industries like heat exchange

systems look promising. The nanofluids can be used in the
subsequent precise areas like chemical nanofluids, environ-
mental nanofluids, heat transfer nanofluids, pharmaceutical
nanofluids, drug delivery nanofluids, and process/extraction
nanofluids. In short, the number of engineering and industrial
applications of nanofluids technologies, as well as their
emphasis on particular industrial applications, has been
increased recently [1–7]. The capability of thermal transmis-
sion of nanofluids can be quantified by their properties like
specific heat, density, viscosity, and thermal conductivity.
The thermal properties are contingent on the shape, base fluid,
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particle size, material, and concentration. To utilize the appli-
cations towards engineering and industries, researchers are
working on the evaluation and characterization of the thermo-
physical properties of nanofluids for heat transfer analysis [8].
Sheikholeslami [9] analyzed the different shapes of aluminum
oxide using the Darcy porous medium with thermal radiation.
Hayat et al. [10] investigated the nanofluid flow with Hall and
Ohmic influences. They deliberated the thermal convective and
velocity slip boundary conditions. The Hall and Ohmic param-
eters have reduced the velocity and heat transfer rate. Sheikho-
leslami [11] presented the analysis different shapes of
nanoparticles of copper oxide water with Brownian motion. It
has been introduced that the platelet shape nanoparticles has
leading impression as associated to other shapes of nanoparti-
cles. Thumma et al. [12] investigated the non-Newtonian nano-
fluid flow containing water-based CuO and Cu nanoparticles
past porous extending sheet with entropy optimization and
velocity condition. A non-Fourier has been implemented to
analyze the heat transfer rate. Hayat et al. [13] examined the
Cu, Fe2O3, and Au nanoparticles with Hall and Ohmic effects
using constant and variable viscosities. Sheikholeslami et al.
[14] addressed the Al2O3-water nanoparticles through a chan-
nel with Brownian motion impact. Thumma et al. [15] deliber-
ated the radiative boundary layer nanofluid flow past a
nonlinear extending surface with viscous dissipation. Rout
et al. [16] analyzed the water-based Cu and kerosene oil-based
Cu between two parallel plates with thermal radiation. Further
studies related to nanofluids are mentioned in [17–26].

The flow behavior of a flowing conducting liquid is
described by magnetohydrodynamic (MHD), which polar-
izes it. In industrial activities such as nuclear power plants,
crystal manufacture, electric generators, and fuel industry,
the impact of magnetic fields is assessed. Tamim et al. [27]
addressed the MHD mixed convective flow of nanofluid on
a vertical plate. They studied both opposing and assisting
flows. The water-based Cu, Al2O3, and TiO2 are examined.
Ghadikolaei et al. [28] implemented the induced magnetic
field on hybrid nanofluid flow through an extending surface.
Hayat et al. [29] explore the unsteady MHD viscous fluid flow
with Joule heating, thermal radiation, and thermal stratifica-
tion influences. Ahmad et al. [30] expressed the MHD flow
of ferrofluid past an exponentially extending surface. Singh
et al. [31] investigated the MHD flow of water-based alumina
nanofluid past a flat plate with slip condition. Mliki et al. [32]
evaluated the convective nanofluid flow with MHD effect.
Upreti et al. [33] presented the CNT nanofluids past an
extending surface with nonuniform heat source/sink and
Ohmic heating. Pandey et al. [34] presented the MHD
water-based copper nanofluid flow inside a convergent/diver-
gent channel. Upreti et al. examined theMHDAg-kerosene oil
nanofluid with suction/injection roles. Turkyilmazoglu [35]
presented the viscous fluid flow with magnetic field impact
past a spinning disk. The MHD viscous fluid flow considering
wall slip conditions has been investigated by Hussain et al.
[36]. Dawar et al. [19] presented the highly magnetized and
nonmagnetized non-Newtonian fluid flow past an extending
cylinder. Further related results can be seen in [18, 37–45].

Magnetic nanoparticles pique the researchers’ interest in
various fields, including homogeneous and heterogeneous

catalysis, magnetic fluids, environmental remediation, bio-
medicine, data storage, and magnetic resonance imaging
(MRI) for instance purification of water. The literature proves
that the nanoparticles of size less than the critical value (i.e., 10-
20nm) perform best [46]. Nanoparticles’ magnetic properties
effectivelymonopolize at such a small scale, rendering them ben-
eficial and helpful in a wide range of applications [46–49]. In
light of the abovementioned applications, we have considered a
mathematical model for the flow of nanofluid containing the
nanoparticles of Cu-H2O, Al2O3-H2O, and TiO2-H2O, and pure
water with a strong magnetic field. According to the authors
knowledge, there is no study based on spherical-shaped nano-
particles of the Cu, Al2O3, and TiO2 using water as a based fluid
past a rotating disk. Furthermore, the velocity slip and convective
conditions are considered to analyze the flow behavior in the
presence and absence of slip conditions. The mathematical
model is solved with the help of the homotopic approach.

2. Physical Model

We consider the water-based nanomaterials (Cu, Al2O3, and
TiO2) past a rotating disk. The velocity components ~u1,~u2, and
~u3 are taken along ~r,ϕ, and ~z directions, respectively. The disk
rotates with an angular velocityΩ at ~z = 0 (see Figure 1). Amag-
netic field of strength B0 is applied normal to the fluid flow. The
flow is subjected to velocity slip and thermal convective condi-
tions. The leading equations are defined as follows [35]:
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The thermophysical properties of the nanofluids are defined
as [50]

In the above equations, μ is the dynamic viscosity, ρ is
the density, cp is the heat capacitance, L is the wall slip
parameter, ~p is the pressure, k is the thermal conductivity,
and φ represents the volume fraction of the nanoparticles.
Furthermore, the subscript f indicates the base fluid, nf
shows the nanofluids, and np is used for nanoparticles.

The correspondence variables are defined as [53–55]
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The above system is transformed as
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with

f 0ð Þ = αf ′ 0ð Þ, g 0ð Þ = 1 + αg′ 0ð Þ, h 0ð Þ = 0, knf
kf

θ′ 0ð Þ = Bi θ 0ð Þ − 1ð Þ
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Here, M = σf B
2
0/ρfΩ is the magnetic parameter, Pr = νf

/αf is the Prandtl number, α = L~r
ffiffiffiffiffiffiffiffiffiffi
Ω/νf

p
is the wall slip

parameter, and Bi = ðhf /kf Þ
ffiffiffiffiffiffiffiffiffiffi
Ω/νf

p
is the thermal Biot

number.
The surface drag force Cf~r and heat transfer rate Nur are

defined as [53, 55]
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The dimensionless form of Equation (7) is:
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where Re =Ω~r2/νf is the local Reynolds number.

3. HAM Solution

The initial guesses and linear operators are defined as
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where ciði = 1 − 6Þ are called arbitrary constants.

μnf
μf

= 1
1 − φð Þ2:5 ,

ρnf
ρf

= 1 − φð Þ + φ
ρnp
ρf

,
ρcp
� �

nf
ρcp
� �

f
= 1 − φð Þ + φ

ρcp
� �

np
ρcp
� �

f

σnf
σf

= 1 +
3 σnp/σf
� �

− 1
� �

φ

σnp/σf
� �

+ 2
� �

− σnp/σf
� �

− 1
� �

φ
, knf
kf

=
knp + n − 1ð Þkf − n − 1ð Þ kf − knp

� �
φ

knp + n − 1ð Þkf + kf − knp
� �

φ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: ð3Þ

3Journal of Nanomaterials



4. HAM Convergence

Figure 2 is displayed for the convergence of series solutions.
The auxiliary parameters ℏf , ℏg, and ℏθ are responsible for
the adjustment and controlling of the series solutions.
Therefore, the acceptable values for velocities and thermal
profiles are −2:1 ≤ ℏf ≤ −0:1, −1:9 ≤ ℏg ≤ 0:0, and −2:5 ≤ ℏθ
≤ 0:2.

5. Results and Discussion

This segment compacts with the impressions of different
embedded factors on velocities and temperature, surface
drag force and heat transfer rate. We have considered the
spherical-shaped three different nanoparticles like Cu,
Al2O3, and TiO2 with a base fluid H2O. Since water is used
as a base fluid, therefore, Pr = 6:2. The thermophysical prop-
erties of Cu, Al2O3, TiO2, and H2O are presented in Table 1.
The shape factor and sphericity of the different nanoparticles
are presented in Table 2. In Table 3, we have presented the
numerical values of skin friction via magnetic parameter
for different water-based spherical-shaped nanoparticles
and pure water. Both slip and no-slip conditions are consid-
ered here. The greater magnetic parameter augments the
skin friction coefficient. Actually, the magnetic parameter
drops off the velocity function due to Lorentz force. The
heightening Lorentz force means the skin friction coefficient
augments which has been seen for the spherical-shaped Cu,
Al2O3, and TiO2 nanoparticles and pure water for the case of
no-slip condition. For the case of slip condition, interesting
results have been introduced here. Physically, the presence
of slip parameter reduces the velocity of the fluid due aug-
menting skin friction coefficient as occurs which allow more
fluid to past the disk as found for pure water. However, for
the spherical-shaped Cu, Al2O3, and TiO2 nanoparticles,
the presence of slip and magnetic parameters have diverse
impact on surface drag force. In addition, the greater impact
of magnetic parameter occurs in the absence of slip effect.
Table 4 shows the numerical values of surface drag force
via spherical-shaped nanoparticle volume fraction for the
different water-based nanoparticles. Physically, the increas-
ing nanoparticle volume fraction means that the nanoparti-

cles and the base fluid collide with each other which
accelerates the fluid motion; consequently, the momentum
boundary layer thickness decreases and upsurges the surface
drag force. Also, the impact of spherical-shaped nanoparti-
cles volume fraction is the same for the local Nusselt number
as portrayed in Table 5. Additionally, the surface drag force
is greater for the case of no-slip condition. The increasing
thermal Biot number augments the heat transfer rate.
Tables 6–8 show the comparison of analytical and numerical
techniques for f ðηÞ, gðηÞ, and θðηÞ. Here, a close agreement
between both techniques is found. Figure 3 shows the impact
of nanoparticle volume fraction on spherical-shaped Cu,
Al2O3, and TiO2 nanoparticles. Figure 4 shows the variation
in radial velocity of the spherical-shaped Cu, Al2O3, and
TiO2 nanoparticles and pure water (H2O) via a magnetic
parameter for the case of no-slip condition. The greater
magnetic factor diminishes the radial velocity of the
spherical-shaped Cu, Al2O3, and TiO2 nanoparticles and
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Figure 2: ℏ-curves for f ′ð0Þ, g′ð0Þ, and θ′ð0Þ.

Table 1: Numerical values of the thermophysical properties of
H2O, Cu, Al2O3, and TiO2 [13, 51, 52].

Base fluid and
nanoparticles

ρ kg/m3� �
cp J/kgKð Þ k W/mKð Þ σ 1/Ωmð Þ

H2O 997.1 4179 0.613 0.05

Al2O3 3970 765 40 1 × 10−10

Cu 8933 385 401 5:96 × 107

TiO2 4250 685.2 8.9539 2:6 × 106

Table 2: Shape factor and sphericity of different particle shapes
[56, 57].

Shape of the nanoparticle Sphericity Shape factor

Sphere 1.0 3.00

Cylinder 0.62 4.84

Blade 0.36 8.33

Platelet 0.52 5.77

Brick 0.81 3.70
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r
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Figure 1: Geometrical representation of the flow problem.

4 Journal of Nanomaterials



pure water (H2O). Physically, the applied magnetic field cre-
ates Lorentz force during the fluid flow which opposes the
motion of the flow nanoparticles; consequently, a reducing
impact is observed. For the case of slip condition, a similar
impact of magnetic parameter is observed for radial velocity
of the spherical-shaped Cu, Al2O3, and TiO2 nanoparticles
and pure water (H2O) as displayed in Figure 5. Furthermore,
the presence of a slip parameter reduces the velocity of the
fluid due to augmenting skin friction coefficient occuring
which allows more fluid to past the disk. So, the combination
of magnetic and slip parameters has greater impact on veloc-
ity profile of the spherical-shaped Cu, Al2O3, and TiO2
nanoparticles and pure water (H2O) as compared to no-
slip condition. Figure 6 displays the variation in radial veloc-
ity f ðηÞ of the spherical-shaped Cu, Al2O3, and TiO2 nano-
particles via φ for the case of no-slip condition. The greater
φ augments the radial velocity of the spherical-shaped Cu
nanoparticle, while it reduces the radial velocity of the
spherical-shaped Al2O3 and TiO2 nanoparticles. Physically,
the greater φ opposes the motion of the spherical-shaped
Al2O3 and TiO2 nanoparticles which augments the bound-
ary layer thickness and slows down the velocity profile, while
this impact is opposite for Cu nanoparticle. For the case of
slip condition, the greater φ augments the radial velocity of
the spherical-shaped Cu nanoparticle, while it reduces the
velocity profile for Al2O3 and TiO2 nanoparticles next to
the surface of the rotating disk and moderates the increasing
effect as η⟶∞ (see Figure 7). Figures 8 and 9 portray the
variation in gðηÞ of the spherical-shaped Cu, Al2O3, and
TiO2 nanoparticles via a magnetic parameter for the case
of no-slip and slip conditions, respectively. For both no-

Table 3: Numerical values of the skin friction via magnetic parameter for different water-based spherical-shaped nanoparticles and pure
water.

Magnetic parameter Values No-slip condition Cu Al2O3 TiO2 Pure water

M

1.0
α = 0:0

0.97455 0.95901 0.97484 0.94904

2.0 1.33931 1.30845 1.34076 1.30432

3.0 1.70971 1.66292 1.71184 1.66454

Slip condition

1.0
α = 0:5

0.69813 0.69369 0.69740 0.82172

2.0 0.78174 0.77365 0.78104 0.57823

3.0 0.86542 0.85368 0.86475 0.33615

Table 4: Numerical values of the skin friction via spherical-shaped nanoparticle volume fraction for different water-based nanoparticles.

Nanoparticles volume fraction Values No-slip condition Cu Al2O3 TiO2

φ

0.1
α = 0:0

0.97455 0.95901 0.97484

0.2 1.00105 0.96960 1.00142

0.3 1.02854 0.98086 1.02879

Slip condition

0.1
α = 0:5

0.69813 0.69369 0.69740

0.2 0.71727 0.70832 0.71578

0.3 0.73702 0.72352 0.73397

Table 5: Numerical values of the local Nusselt number via the Biot
number and spherical-shaped nanoparticle volume fraction for
different water-based nanoparticles and pure water.

Parameters Values Cu Al2O3 TiO2 Pure water

Bi
0.1 0.08433 0.08449 0.08504 0.08787

0.2 0.15021 0.15050 0.15146 0.15648

0.3 0.20882 0.20321 0.20450 0.21124

φ

0.1 0.16124 0.15782 0.14667 —

0.2 0.29520 0.28292 0.24451 —

0.3 0.54998 0.51512 0.41199 —

Table 6: Analytical and numerical solutions for f ðηÞ.
η HAM Shooting Absolute error

0.0 1:277200 × 10−17 0.048458 0.048458

0.5 0.079926 0.157846 0.077921

1.0 0.092998 0.199663 0.106666

1.5 0.083715 0.203372 0.119657

2.0 0.068544 0.186409 0.117866

2.5 0.053523 0.159724 0.106202

3.0 0.040535 0.129866 0.089330

3.5 0.029738 0.100012 0.070274

4.0 0.020472 0.070470 0.049998

4.5 0.011394 0.038415 0.027021

5.0 8:673620 × 10−19 -0.004014 0.004014
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slip and slip conditions, similar impacts are found here as
seen in Figures 4 and 5. However, the impact of slip condi-
tion is greater for f ðηÞ as compared to gðηÞ. Figure 10 shows
the variation in velocity profile gðηÞ of the spherical-shaped
Cu, Al2O3, and TiO2 nanoparticles via φ for the case when
α = 0:0. The greater φ augments the velocity profile gðηÞ of
the spherical-shaped Cu, Al2O3, and TiO2 nanoparticles.
Physically, the greater φ opposes the motion of the
spherical-shaped Cu, Al2O3, and TiO2 nanoparticles which
augments the boundary layer thickness and slows down
the velocity profile. For the case when α = 0:5, the greater
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Figure 5: Variation in f ðηÞ via M when α = 0:5.
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Figure 6: Variation in f ðηÞ via φ when α = 0:0.
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Figure 4: Variation in f ðηÞ via M when α = 0:0.

Table 7: Analytical and numerical solutions for gðηÞ.
η HAM Shooting Absolute error

0.0 1.000000 0.918880 0.081120

0.5 0.622565 0.730215 0.107650

1.0 0.401548 0.588991 0.187443

1.5 0.263876 0.474205 0.210329

2.0 0.175398 0.377681 0.202282

2.5 0.117530 0.296126 0.178596

3.0 0.079169 0.227544 0.148375

3.5 0.053275 0.169557 0.116282

4.0 0.035073 0.118368 0.083296

4.5 0.020845 0.067299 0.046454

5.0 0.006738 0.003395 0.003343

Table 8: Analytical and numerical solutions for θðηÞ.
η HAM Shooting Absolute error

0.0 0.520728 0.514973 0.005755

0.5 0.407258 0.303778 0.103477

1.0 0.316987 0.170961 0.146029

1.5 0.248884 0.098508 0.150376

2.0 0.196218 0.059782 0.136436

2.5 0.153566 0.038072 0.115494

3.0 0.117379 0.024878 0.092501

3.5 0.085413 0.016085 0.069328

4.0 0.056215 0.009652 0.046563

4.5 0.028772 0.004487 0.024285

5.0 0.002246 -0.000105 0.002351

0.6

Copper
Aluminium oxide
Titanium dioxide

0.5

0.4

0.3

0.2

0.1

0.0
0.05 0.10 0.15 0.20 0.25 0.30 0.35

k
n
f

𝜑

Figure 3: Impact of nanoparticle volume fraction on spherical-
shaped nanoparticles of water-based Cu, Al2O3, and TiO2.
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φ reduces the velocity profile gðηÞ of the spherical-shaped
Cu, Al2O3, and TiO2 nanoparticles (see Figure 11). Addi-
tionally, the reducing impact of φ is greater for α = 0:5 as
compared to α = 0:0. Figure 12 shows the variation in tem-
perature profile θðηÞ of the spherical-shaped Cu, Al2O3,
and TiO2 nanoparticles via φ. The greater φ augments the
temperature profile. Physically, the greater φ upsurges the
thermal conductivity of the Cu, Al2O3, and TiO2 nanoparti-
cles and thermal transfer rate. Therefore, the nanoparticle
which has high thermal conductivity has the dominant
impact on temperature profile and heat transfer rate as

shown in Figure 3 and Table 5. Here, Cu nanoparticle has
greater thermal conductivity than Al2O3 nanoparticle, and
Al2O3 nanoparticle has greater thermal conductivity than
TiO2 nanoparticle. So, the greatest impact of Cu nanoparti-
cle is found here. Figure 13 shows the variation in tempera-
ture profile θðηÞ of the spherical-shaped Cu, Al2O3, and
TiO2 nanoparticles via the thermal Biot number. The greater
Biot number augments the thermal profile θðηÞ of the
spherical-shaped Cu, Al2O3, and TiO2 nanoparticles. Physi-
cally, the heat transfer coefficient caused by the hot fluid is
directly related to the Biot number. Therefore, the greater
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Figure 9: Variation in gðηÞ via M when α = 0:5.
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Figure 10: Variation in gðηÞ via φ when α = 0:0.
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Figure 11: Variation in gðηÞ via φ when α = 0:5.
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Biot number raises the convection and thermal profile sig-
nificantly. Additionally, the spherical-shaped Cu nanoparti-
cle has greater impact on thermal profile as compared to
Al2O3 and TiO2 nanoparticles.

6. Conclusion

In this work, we have examined the water-based spherical-
shaped nanoparticles of copper-water, aluminum oxide-
water, titanium dioxide-water, and pure water past a rotat-
ing disk. Slip and no-slip conditions are considered in order
to examine the variations in radial and tangential velocities
due to the magnetic field, nanoparticle volume fraction,
and thermal Biot number. The final points are mentioned
below:

(a) For α = 0:5, the surface drag force of Cu, Al2O3, and
TiO2 have reduced with the increasing magnetic
parameter, while for α = 0:0, the surface drag force
of the Cu, Al2O3, and TiO2 nanoparticles have aug-
mented with the increasing magnetic parameter.
Additionally, the greater impact of magnetic param-
eter occurs when α = 0:5

(b) The surface drag force and heat transfer rate of
spherical-shaped nanoparticles of Cu, Al2O3, and
TiO2 is augmented via nanoparticle volume fraction

(c) For α = 0:5 and α = 0:0, the radial and tangential
velocities of the spherical-shaped nanoparticles of
Cu, Al2O3, and TiO2 and pure water have aug-
mented via a magnetic parameter. Additionally, the
impact of magnetic field is greater for radial velocity
as compared to tangential velocity

(d) For α = 0:5 and α = 0:0, the tangential velocity of the
spherical-shaped nanoparticle of Cu, Al2O3, and
TiO2 has reduced via nanoparticle volume fraction.
Additionally, the reducing impact of nanoparticle
volume fraction is greater for α = 0:5 as compared
to α = 0:0

(e) The greater nanoparticle volume fraction and ther-
mal Biot number have increased the temperature

profile of the spherical-shaped nanoparticles of Cu,
Al2O3, and TiO2

Nomenclature

B0: Strength of magnetic field
Bi: Thermal Biot number
Cf : Skin friction coefficient
ciði = 1 − 6Þ: Arbitrary constants
cp: Heat capacitance
f0, θ0, g0: Initial guesses
k: Thermal conductivity
L: Wall slip parameter
Lf , Lg, Lθ: Linear operators
M: Magnetic parameter
Nu: Nusselt number
~p: Pressure
Re: Reynolds number
Pr: Prandtl number
~r,ϕ, ~z: Coordinates
~u1, ~u2, ~u3: Velocity components

Greek Letters

Ω: Angular velocity
σ: Electrical conductivity
ρ: Density
μ: Dynamic viscosity
α: Dimensionless wall slip parameter
φ: Volume fraction of the nanoparticles

Subscripts

f : Fluid
nf : Nanofluids
np: Nanoparticles.
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