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The mechanical properties of TiAlN deposited on the steel are explained in this study. Thin films are deposited by RF magnetron
sputtering on the steel substrates to improve the wear resistance and hardness of the samples. Due to their improved
microstructure and nanograins, the nanofilms have improved the mechanical properties of the steel substrate surface. The thin
film deposited has improved the wear resistance by 80% and has improved the hardness by 95%. The deposited thin films are
tested for hardness by nanoindentation and wear test by the pin-on-disk test. SEM has tested films for their microstructure
and adhesion by nanoscratch test.

1. Introduction

Titanium aluminium nitride (TiAlN) films have grown due
to several notable mechanical characteristics, such as excep-
tional hardness, wear resistance, and corrosion resistance
[1]. TiAlN films have several other advantages as well [2].
TiAlN also has a low thermal expansion coefficient and a
high conductivity coefficient [3]. These coatings are used in
various industries, including the semiconductor device busi-
ness, where they serve as an electrode barrier to protect
semiconductor devices from damage [4]. TiAlN films are
also being used in bioapplications as coatings for bioim-
plants [5]. Titanium-based implants made using DMLS
(direct metal laser sintered) technology are relatively new
to the biomedical profession [6]. Even though cobalt-based
and nickel-based alloys are still in use in the medical profes-
sion [7], titanium and its alloys are becoming increasingly
popular in the field [8].

PVD coatings are responsible for both the gradient
diffusion layer’s thickness and the layer’s adherence to the
substrate [9]. Utilizing PVD methods for nitride layer for-
mation to improve the properties of biomaterials or machin-
ing tools is a fairly popular method of improving
performance [10]. This metal nitride is extremely resistant
to oxidation due to the formation of a sublayer of titanium
dioxide (TiO2) and protective aluminium oxide (Al2O3) pro-
tective film [11]. TiAlN thin film has already been applied
using a variety of deposition techniques, including physical
vapour deposition (PVD), thermogradient reactive deposi-
tion process (TRD), and magnetron sputtering [12]. Other
deposition techniques, such as physical vapour deposition
(PVD), thermogradient reactive deposition process (TRD),
and magnetron sputtering process, are used [13]. Faults,
such as interstitial faults, emptiness, and point defects, can
occur in the design process [14]. When a coating is applied,
residual stress and other defects impact the coating’s
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performance [15]. Kishi et al. investigated and found that the
adhesion between polystyrene and CF reinforced epoxy ply
should be improved for better flexural properties [16]. Cho
et al. observed that incorporation of GO in to CF reinforced
epoxy composites improves the interfacial strength between
matrix and reinforcement due to hydrogen bonding and
mechanical interlocking [17]. Kumar et al. found that the
carbon black modified CFs possess better surface energy,
due to the topology of the CFs than the untreated CFs and
also observed that carbon black modified CF epoxy compos-
ites have better interfacial adhesion due to the wettability
between matrix and CF [18]. Yogeshwaran et al. investigated
and found that carbon fabric reinforced epoxy composite
exhibits better shear response than UDCF reinforced epoxy
composites because of the energy absorption capacity of fab-
ric at ultimate levels of stress and strain [19].

AISI 304 is one of the most widely used modern struc-
tural materials [20]. These properties allow it to be welded,
making it highly corrosion resistant and capable of with-
standing mechanical stress [21]. However, only wear and
cavitation erosion resistance is protected by this cap (CER)
[22]. To strengthen the wear resistance of SS, apply several
types of hard coatings, such as TiN, CrN, TiAlN, AlTiN, or
AlCrN. As a result of advances in TiAlN or AlTiN technol-
ogy, current TiAlN or AlTiN hard films are now extensively
used to manufacture machine tools or machine components

to reduce tribochemical and adhesive wear or to enhance
their resilience to extreme heat conditions [23]. Therefore,
if metal components undergo severe wear processes, their
overall wear resistance can be enhanced by utilizing AlTiN
and TiAlN coatings, with various Al/(Ti +Al) ratios.
Another benefit of TiAlN or AlTiN-based universal ternary
coating systems is their ability to significantly improve
tribological properties, as well as resistance to cavitation
erosion [24].

TiN and CrN hard thin film coatings have a higher CER
on their steel substrates than steel substrates that have not
been coated with hard thin films. When it comes to mechan-
ical properties, ternary film systems are often preferable to
binary coating processes in most cases. Furthermore,
according to the literature, for CER and PVD coatings, film
characteristics and substrate mechanical properties are criti-
cal considerations. In addition to this, research is looking
into using an aluminium alloy coated with a thin TiAlN
layer as a structural component [25]. The constant evolution
of the metal machining industry has resulted in the intro-
duction of continuous cutting and interrupted cutting
methods of cutting. When milling is interrupted during cut-
ting, the mechanical impact and heat induce mechanically
and comb cracks to form in the material. Damage resistance
and adhesion are critical for a successful application.
Because coated milling tools are subjected to fractures that

Figure 1: Sputtering machine.

Figure 2: Agilent G200 nanoindenter and nanoscratch device.

Table 1: Hardness values of TiAlN thin films.

Sample
100W-
TiAlN

150W-
TiAlN

200W-
TiAlN

250W-
TiAlN

Hardness (HV) 28.1 30.5 32.1 30.2

Table 2: Elastic modulus values of TiAlN thin films.

Sample
100W-
TiAlN

150W-
TiAlN

200W-
TiAlN

250W-
TiAlN

Modulus (GPa) 510 545 555 530

Figure 3: TiAlN thin film on steel.
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originate and propagate throughout the milling process,
their cutting capabilities are severely limited. When the
tool’s surface layers are alternately extended and contracted
when the tool is being used, this is a highly common source
of cracks in the tool. Since the tool coating promotes numer-
ous comb cracks and the fact that the multilayered TiN/TaN
combination allows the tools to interact with each other,
stainless steel that is milled using cemented carbide tools
coated with multilayered TiN/TaN and single-layered TiN
and TaN tends to suffer from higher rates of failure when
milled with tools with these coating combinations [26].
Cutting tools with high hardness, high toughness, high oxi-
dation resistance, and high hot hardness are ideal for inter-
rupting processes in the manufacturing process.

In this study, HSS steel of grade M35 is selected for the
study and is coated by TiAlN by using RF sputtering deposi-
tion process. Samples were tested for their hardness, micro-
structure, wear resistance, and adhesion. Coatings are tested
with nanoindentation, SEM, pin-on-disk, and nanoscratch
test that were evaluated.

2. Materials and Methods

The RF sputtering procedure was used to coat TiAlN targets
on steel to get a uniform coating. This material, which has a
purity of 99.99%, a diameter of 50mm, and a thickness of
3mm were obtained and used in the current study. The
experimental system is depicted in Figure 1. A magnetron
is connected to the power source through an impedance

matching network to hold the target material in place. In
order to serve as an electrode, the chamber is connected to
the ground, resulting in a fully functional circuit. Sputtering
power is varied from 100W to 250W in steps of 50W.

Steel is cut into 10 × 10 × 1mm substrates and ground
down to a degree of precision of order 0.2m by utilizing sev-
eral grades of abrasive papers and diamond polish to achieve
this precision level. Steel samples that have been cleaned and
etched are submerged in an acetone solution for ten
minutes, after which they are sputter-etched in oxygen
plasma for the remaining ten minutes [27]. Turbo pumps
are used to keep the operating pressure in the vacuum cham-
ber constant at 10-12 bar at all times. The total thickness of
TiAlN films is 1000 nm. The nanoindentation procedure is
used to investigate the mechanical behaviour of thin films
(hardness, elastic modulus). Temperature and pressure are
always maintained as constant. Figure 2 shows the nanoin-
dentation instrument, which is used for both hardness and
adhesion tests [28].

The scratch test is performed on the samples to deter-
mine the adhesion of the DLC coatings that have been devel-
oped. Furthermore, the scratch analysis of the film is carried
out using the nanoindentation machine with Berkovich
indenter. The critical load of coating peels offload gradually
increased over a period of time. This load is considered the
adhesion strength of the film, and it is considered the maxi-
mum load [29].

The scanning electron microscope (SEM) is used in the
examination of the thin film microstructure. Pin-on-disk
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Figure 4: Hardness variation in samples.
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method is used for the wear resistance measurement. Pin
made of uncoated steel samples is used to measure wear
and friction in the laboratory. For the test, 100 gm of the
load is utilized, and 5000 revolutions are completed.

3. Results and Discussions

Tables 1 and 2 exhibit the developed thin film modulus and
hardness values, determined using nanoindentation testing
with a load vs. deflection measurement method [30]. A
micro-Newton load was applied using the Berkovich
indenter. Figure 3 shows the TiAlN thin film on a steel
substrate.

As the soft substrate takes away all the load, the underre-
ported value is difficult to measure. It has hard to discern the
hardness and elastic modulus of the coating with ordinary
indentation. The soft substrate cushioned the rigid thin film
coating. The DLC coating is extremely rigid, and it directly
applies the load to the substrate [31]. When a load is applied,
elastic deformation occurs to the substrate, and the hardness
under load is measured. When a load is applied, the sub-
strate exhibits elastic deformation, and the load-hardness
relationship is examined. These findings resulted in the
combined hardness of the coating and substrate, which
degraded the quality of the coating. Many trials were per-
formed on each sample, and the average hardness and elas-
ticity modulus were determined. The exact hardness of the
sample area is determined under the condition of unplug-
ging the load. When the maximum load was reached, each
trial was held for 15 seconds [32].

The hardness values of the thin films calculated are pre-
sented in Table 1. The highest hardness has been measured
for the sample, which is coated at 200W substrate power.
The highest hardness is 14% higher than the least hardness
measured. Although the nanohardness of the TiAlN sample
is measured, there are high chances of getting defective mea-
surements due to the presence of defects under the subsur-
faces of the surface [33].

Due to these defects, the nanoindentation method is not
suitable for bulk materials. However, the modulus of the
materials can be compared. The modulus of M35 steel is
207GPa, whereas the highest measured modulus in this
study is 555GPa. TiAlN is 168% higher than the M35 steel.
Figures 4 and 5 expose graphical representations of hardness
and modulus values of thin films deposited. It indicates that
the TiAlN thin film has considerably increased the hardness
and modulus of the substrate [34].

4. Microstructure

SEM micrograph of the TiAlN sample deposited at 200W
sputtering power is shown in Figure 6. The deposited thin
film has a microstructure of size 5-6 nm. The microstructure
is uniform in nature and has very few pinholes and defects.
The nature of the film as it has nano-sized grains is respon-
sible for the increase in hardness. The structure is similar to
all the samples [35]. The remaining samples have the same
microstructure but with higher defects. Due to these defects,
it can be said that the hardness has been reduced for the

other samples. The TiAlN particles are evenly distributed
in the thin film. The defects present in the thin film are gen-
erated due to the stresses developed during the deposition
process. As the incoming atoms come with high energy,
the impact of the particles causes stresses in the film. There
is no stress-relieving mechanism employed during the
deposition like annealing. There is no film peel off that has
been observed indicating the good affinity of the film with

Figure 7: TiAlN deposited at 100W power.

Figure 8: TiAlN deposited at 150W power.

Figure 6: SEM micrograph of TiAlN thin film.
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the sample [36]. For comparison purposes, the SEM micro-
graphs of films deposited at 100 and 150 are given in
Figures 7 and 8.

4.1. Wear Test. The coating samples were tested using pin-
on-disk wear testing after being placed on a steel pin and
subjected to wear. Wear values in the samples ranged
between 0.02 and 0.04. There are some differences in the
COF curves of the two samples. It means that the sample
was subjected to abrasion wear during the testing process.
Despite low COF concentrations, it is still possible to detect
them. Figure 9 gives the wear rate behaviour of the sample
tested.

All coating samples exhibited no signs of film chipping
or peeling, indicating that the TiAlN coating adhered to
the substrates effectively under the conditions used in the
current test.

4.2. Adhesion Test. The nanoscratch test is used to determine
the adhesion strength of TiAlN films. The values that are
included in the results are shown in Table 3. The samples’
adhesive strength increases in direct proportion to the
increase in substrate power up to 20W. When the power
output is increased from 200W to 250W, the adhesion
strength decreases significantly. When the amount of sput-
tering energy supplied to an atom increases, so does the
amount of energy transferred from that atom to the impact
point, causing increased stress. Following the nondissipation
of this stress, additional atoms are deposited on top of it,
resulting in a stress build-up. The stress in the film increases
as the sputtering power increases, resulting in a loss of adhe-
sion between the film and the substrate.

5. Conclusion

TiAlN thin films are successfully deposited onto the H35
steel substrate. The TiAlN thin films have remarkably
improved the hardness and the modulus of the substrate.
The modulus has increased by 168% compared to the sub-
strate by the thin film application. The thin film generated
has a microstructure of order less than 10nm with a uniform
surface. Further study is needed to make the film error-free
with pinholes and cracks. The adhesion of the film is better
when the sputtering power is maintained at 200W. Overall,
to obtain better adhesion and hardness along with wear
resistance suggested maintaining sputtering power at 200W.
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Figure 9: Wear rate of TiAlN thin film.

Table 3: Elastic modulus values of TiAlN thin films.

Sample
100W-
TiAlN

150W-
TiAlN

200W-
TiAlN

250W-
TiAlN

Adhesion strength (GPa) 32.1 38.6 41.3 34.3
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