N-doped carbon dots derived from melamine and triethanolamine

for selective sensing of Fe³⁺ ions

Sathishkumar Munusamy^a, Sathish Sawminathan^b, Thanigaivelan Arumugham^c, Maura Casales Diaz^d, Srinivas Godavarthi^e, and Mohan Kumar Kesarla^{d,*}

^aInstitute of chemical biology and nanomedicine, State key laboratory of chemo/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R.China.

^bDepartment of Chemistry, School of Advanced Sciences and Vellore Institute of Technology, Vellore-632014, India.

^cDepartment of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.

^dInstituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, 62210 Cuernavaca, MOR, México

^eCONACYT–Universidad Juárez Autónoma de Tabasco, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Cunduacán C.P., 86690, Mexico

Supporting Information Contents

Figure S1. X-ray diffraction patterns of as prepared NCDs.	2		
Figure S2. FTIR spectrum of as synthesized NCDs.	3		
Figure S3. Absorption changes at 270nm with increasing concentration of Fe ^{3+.}	4		
Figure S4: FT-IR spectra of NCDs with Fe ³⁺ and Cu ²⁺			
Table S1. Comparison of LOD of Fe ³⁺ detection reported in recent papers	6		

Figure S1: X-ray diffraction patterns of as prepared NCDs.

Figure S2. FT-IR spectrum of as synthesized NCDs.

Figure S3. Absorption changes at 270nm with increasing concentration of Fe^{3+} .

Figure S4: FT-IR spectra of NCDs with Fe^{3+} and Cu^{2+}

Table S1. Comparison of LOD of Fe^{3+} detection reported in recent papers based on chemosensors and nanomaterials.

S.No	Reported Probe	LOD	Reference
1	Salicylaldehyde based Schiff	0.163 & 3.99	Mater. Chem. Front., 2020,4, 1471-1482
	base	μΜ	
2	N-doped carbon dots	42 nm	Analyst, 2020,145, 5450-5457
3	N-doped carbon dots	0.18 µM	Analyst, 2020,145, 4931-4936
4	Triazole Based	82 & 93 µM	Asian J. Org. Chem. 2020, 9, 1081
5	Glycoluril based	30 µM	ChemistrySelect 2020, 5, 1878
6	Benzothiazolo-Pyrimidine-	0.16 µM	ChemistrySelect 2019, 4, 4185
	Based		
7	NCQDs prepared from	0.5 μΜ	Microchemical Journal, 2020,158, 105142
	tartaric acid and L-arginine.		
8	Carbon quantum dots from	355.4 nM	Journal of Cleaner Production, 2020, 263, 121561
	pine wood		
9	N and S co-doped carbon	300 nM	Materials Science and Engineering: C, 2019, 99,
	dots		611-619
10	Carbon quantum dots from	0.53 μM	Environmental Research, 2021, 111263 In Press.
	Mexican Mint		https://doi.org/10.1016/j.envres.2021.111263
11	Carbon quantum dots	5.23 μM	Inorganic Chemistry Communications, 2021, 130,
			108636
12	Carbon quantum dots from	0.72 μΜ	Spectrochimica Acta Part A: Molecular and
	phenylalanine and citric acid		Biomolecular Spectroscopy, 2020, 229, 117944
13	Carbon dots from seville	0.53 μΜ	Microchemical Journal, 2020, 159, 105357
	orange		
14	Terbium metal-organic	0.936 µM	Journal of Solid State Chemistry, 2021, 294,
	framework		121835
15	NCDs	216 nM	This work