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The diamond-like carbon- (DLC-) coating technique is used in the sliding parts of automotive engines, among other applications,
to reduce friction and wear. In this work, DLC has been coated on the Aluminium 5051 sample to assess the mechanical and
tribological properties. A sputtering deposition mechanism is used, and the DLC is coated using a graphite target. The
developed DLC coatings are tested for adhesion strength, hardness, chemical composition using XRD, and wear behaviour.
The developed DLC thin films have considerably increased the wear behaviour of the Aluminium 5051 sample and have
fulfilled the objective of this study. The XRD data indicated the presence of amorphous carbon in the coating with a threefold
increase to the hardness of the naked aluminium. This study provides insight into improving the aluminium wear resistance by
developing a considerably hard coating.

1. Introduction

In today’s machinery sector, surface engineering is critical.
Hard coatings extend the service life of tools and moulds,
yet hard coatings are difficult to apply to machine parts built
of soft materials such as aluminium [1]. Thin films with high
hardness can bear higher loads, but as the substrate is a soft
material, the substrate fails the coating and the thin film too
shall fail [2]. Surfaces take up a very little area in a matter
when compared to the bulk. Still, they are extremely difficult
to investigate [3] due to the very asymmetric nature of the
forces acting on the surfaces. Pristine surfaces are highly sus-
ceptible to impurities and flaws. When two extremely pure
surfaces come into contact, adhesive force is created, and

energy is used to separate those surfaces [4]. Adhesion
energy is the energy exerted by atoms on the outer surfaces
of nearby atoms when they come into contact with each
other [5]. A simple van der Waal, covalent, ionic, or electro-
static force can be used as adhesive forces [6]. Cohesive
forces hold atoms together in bulk materials. Atoms are held
together by a cohesive force, and it takes a lot of force to rip a
substance in half [7]. The breaking of cohesive links between
atoms causes the metal to tear. The atoms with broken cohe-
sive bonds on the new surfaces generated after breaking the
parent material will be readily attracted to the new atoms
[8]. Surface energy is the excess free energy per unit area
on a crystal’s surface. It is denoted by and plays a crucial role
in thin-film adherence to the substrate. Surface tension
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values of liquid metals can be extrapolated to absolute zero,
or crystal cleavage can be used to compute this [9]. Other
than the actual approaches, there are several theoretical ways
to calculate surface energy. There are disparities between
practical and theoretical values, and no theoretical value
equates to a practical value. The presence of numerous faults
and impurities in a chosen crystal is the primary source of
this mismatch, and obtaining a crystal-free of defects or
impurities is difficult [10]. Bazan et al. concluded that the
CF-reinforced epoxy composites exhibit 14% reduction in
ILSS, when the samples are aged hydrothermally at 60°C
and at 95% humidity for 1200 hours, and this is due to the
crack initiation at the interface which is caused by thermal
stress [11]. Shrivastava and Singh concluded that the UD
and BD CF-reinforced epoxy composites exhibit 20%and
75% increase in flexural strength, respectively, due to the
growth of CNTs on the surface thereby resulting in good
adhesion with the matrix [12]. An et al. found that the CF-
reinforced epoxy composites with CNTs grown by an
aerosol-assisted CVD process exhibit 94% increase in IFSS
and 210% increase in surface area because of the formation
of the 3D structure on the surface of the fiber, and also,
the fiber diameter is increased from 7 micrometres to 20
micrometres [13].

In general, adhesion can be attributed to the sticking of
two surfaces with each other. Technically, adhesion is
defined as the transfer of mechanical energy in shear
between two surfaces without any damage to the surfaces
or the interface by a slip or inelastic displacement [14].
The most difficult aspect of thin-film adhesion is determin-
ing the strength of the adhesion between the thin film and
the substrate. Even though numerous approaches have been
created, it is critical to select the appropriate process based
on the nature of the coating, substrate, and type of bonding
between the two [15]. There is a wealth of information for
thin-film adhesion on the many types and adhesion mea-
surement methods. Simple pull tests, scratch tests, X-ray
spectroscopy, nanoindentation scratch, and laser spallation
are among the methods used. According to Tamtögl et al.,
theoretical approaches measure theoretical forces at the
atomic level [16]. The observations include the nucleation
rate, island density measurement, critical condensation,
and residence time of depositing atoms. Adhesion between
substrate and coating can be viewed on an atomic scale as
adsorption energy between substrate surface atoms and
coating atoms. Breaking the links between these atoms suf-
fices to remove the coating from the substrate [17]. So, by
measuring the total adsorption energy between atoms and
relating it to all atoms, these approaches measure the total
adsorption energy present between atoms to break the bond.
A smooth round stylus is drawn on a hard-coated sample in
a scratch test by gradually increasing the load. When the
coating breaks and peels away from the substrate, the stylus
is halted and the critical load recorded [18]. Even though it
appears like a simple compression force applied by the stylus
and the substrate is separating the coating, many complex
forces are at work in this test. The load causes plastic defor-
mation of the substrate, while the stylus penetrates the
coating and causes shear strain. This process increases ther-

momechanical reactions with the viscoelastic flow, interfa-
cial failure, and bulk fracture [19]. Scratch tests are difficult
to test to study as a result of this. A direct tensile force is
imparted to the film by pulling it off the substrate with a
pin or rod attached in the usual direction. This approach
can be used to attach thin films, as well as other sticky sur-
faces and objects. The failure that occurs at the substrate-
thin-film contact is referred to as adhesion force [20].

Butler invented the toppling test by modifying the direct
pulling method. Instead of using the conventional force, he
used a brass rod with two legs to impart force laterally to
the thin sheet. When a load is applied, one leg applies com-
pressive force while the other exerts tensile force, causing the
film to peel. Karapappas et al. observed that the CF-
reinforced epoxy composites incorporated with 0.1% CNT
exhibit reduced mechanical properties and 1% incorporation
of CNT leads to enhancement of fracture energy by 45 to
75% [21]. Konuru et al. reported that the CF-reinforced
epoxy composites exhibit incremental IFSS by 70 to 200%,
depending on CNT deposition time on the CF surface [22].
Yogeshwaran et al. found that the CF-reinforced epoxy com-
posites with CNTs grown on the surface possess 150 to 300%
increased toughness due to different aspect ratios of the
CNT [23]. Surface modification of many metals is done with
DLC (diamond-like carbon) thin film. These thin films have
good wear resistance along with corrosion resistance and
hardness. DLC films are amorphous carbon materials con-
taining sp3 and sp2 bonds that are metastable. DLC films
have received much attention among all surface treatment
materials because of their exceptional tribological properties.
The DLC film is increasingly being used as a protective layer.
It is associated with the percentage of sp3 bonds in the films,
and for example, it has a low coefficient of friction and good
wear resistance. On the other hand, it is critical to reducing
the friction and wear of the inner wall surface of many
industrial components with undetectable holes, such as dies,
bushings, and pipes, as a type of industrial application. DLC
has high mechanical properties like high wear resistance and
low friction, which are highly desirable for industrial appli-
cations. DLC nanocoated Aluminium 5051 is mainly used
to reduce the sliding friction of moving parts.

Novel in the research work is that DLC has been coated
on the Aluminium 5051 sample to assess the mechanical and
tribological properties. A sputtering deposition mechanism
technique is used in this research work. The developed
DLC coatings were tested for adhesion strength, hardness,
chemical composition using XRD, and wear behaviour.

2. Methodology

The RF sputtering procedure was used to place graphite tar-
gets on aluminium. Graphite targets with a purity of 99.99%,
a diameter of 50mm, and a thickness of 3.0mm were pro-
cured from Testbourne and utilized for the current study.
Figure 1 depicts a schematic design of the experimental
system. The magnetron on which the target material to be
coated is placed is connected to the RF power supply
through an impedance matching network. The magnetron
serves as an electrode, and the entire chamber is grounded.
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In this experiment, the sputtering power was changed in
stages of 100W from 100 to 400W.

Aluminium is cut into 10 × 20 × 3mm substrates and
ground to a high level of precision of order 0.5m using var-
ious grades of abrasive papers and diamond polish. Alumin-
ium 5051 plates are shown in Figure 2. With acetone
solution, aluminium samples are cleaned and etched in Ar
plasma for 10 minutes before sputtering. Working pressure
is maintained at 10-2 bar in the vacuum chamber and used
for the turbopump. The temperature of the substrate is mon-
itored and can be adjusted manually by the substrate holder.
For the temperature-dependent adhesion qualities, two dif-
ferent substrate temperatures were used: room temperature
and 500 degrees. A total thickness of the film 1200nm is
achieved for the DLC thin films.

The nanoindentation procedure is used to measure the
hardness and elastic modulus. At a specified temperature
and working pressure, samples are mounted on resin for sta-
bilization. The nanoindentation machine with model G200
from Agilent Technologies is utilized for Berkovich indenter
indentations in nanoindentation operations. A scratch test is
done on the samples for estimating the adhesion of the
developed DLC coatings. The same machine used for nano-
indentation is used for the scratch analysis with the Berko-
vich indenter. Load is gradually increased to identify the
critical load at which the DLC coating peels off. This load

is taken as the ultimate load and is considered as adhesion
strength of the film.

The pin on disk is carried out to find the wear and fric-
tion of the samples; the pin is the aluminium sample without
any coating, and the disk is aluminium coated with DLC.
XRD analysis is done on the DLC samples to find the chem-
ical composition of the coating. A load of 100 gm is used for
the test, and a total of 500 is carried out.

3. Results and Discussion

3.1. Hardness. Tables 1 and 2 show the hardness and modu-
lus values of the developed thin films measured by nanoin-
dentation by the load vs. deflection method. The Berkovich
indenter was used to apply a load in the micronewton range.

The hardness of the coated hard thin films is hard to
measure as the soft substrate takes away all the load, so an
underreported value is measured. It is difficult to detect the
hardness and elastic modulus of the coating using regular
indentation. The substrate effect is unavoidable in this sce-
nario, regardless of whether the 10% thickness criterion is
implemented. The soft substrate cushioned the rigid thin-
film coating. The DLC coating is extremely rigid, and it
directly applies the load to the substrate. When a load is
applied, elastic deformation occurs on the substrate, and
the hardness under the load is measured. As a result, the
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Figure 1: Schematic representation of sputtering machine.

Table 1: Measured hardness values of samples deposited at room
temperature along with modulus values.

Sample 100W 200W 300W 400W

Hardness (GPa) 10.6 13.5 18.2 12.3

Modulus (GPa) 51.3 70.2 120 68.1

Table 2: Measured hardness values of samples deposited at 500
degrees along with modulus values.

Sample 100W 200W 300W 400W

Hardness (GPa) 15.1 20.8 22.5 20.1

Modulus (GPa) 76.2 111.2 130.5 100.6
Figure 2: Aluminium 5051 plate (10 × 20 × 3mm).
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findings achieved in this situation are the coating and sub-
strate’s combined hardness, which considerably reduced
the coating’s ensuing qualities. On each sample, many trials
were conducted, and the average hardness and modulus of
elasticity were computed. The area is calculated when the
load is withdrawn to identify the sample’s exact hardness.
At the maximum load, all trials were assigned a holding time
of 15.0 seconds.

The hardness of the samples is calculated, and the high-
est hardness is measured for samples deposited at higher
substrate temperature conditions. For the samples deposited
at room temperature conditions, the hardness is less com-
pared to other samples. As the deposition power increases
from 100W to 400W, the hardness increases up to 300W.
It decreases for 400W. This trend is observed for both room
temperature and high-temperature deposition conditions
[24]. The highest hardness increment found for the room
temperature deposition condition is 71%, as the sputtering
power is increased from 100W to 300W. In contrast, the
hardness increment is 42% when the deposition power is
increased from 100W to 300W. Figure 3 shows the load
vs. displacement diagram achieved using nanoindentation
data. Figures 4 and 5 represent hardness and modulus data
of samples in graphical form.
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Figure 3: Load vs. displacement curves developed by
nanoindentation data.
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Figure 4: Hardness and modulus values of samples deposited at
room temperature.
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Figure 5: Hardness and modulus values of samples deposited at
500 degrees.

Table 3: Adhesion strength of DLC films.

Sample Room temperature 500-degree heat

100W 35.2 41.2

200W 38.9 45.6

300W 42.3 49.1

400W 32.1 33.5
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Figure 6: Adhesion strength of DLC films.
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Figure 7: XRD graph of DLC coating.
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3.2. Adhesion Strength. The adhesion strength of the DLC
films is measured by using a nanoscratch test. The values
of the results obtained are given in Table 3. The adhesion
strength of the samples increases with the increment in the
substrate power up to 300W. From 300W to 400W, the
adhesion strength is found to decrease drastically [25]. This
trend is observed for both room temperature deposited and
high temperature deposited samples. The decrement in the
adhesion can be attributed to the high stresses developed
in the film deposition process when the sputtering power
increases.

As the power increases, the depositing atoms come with
higher energy and strikes the depositing material; this causes
stress at the atom strike site. Before these stresses dissipate,
other atoms get deposited on top of it causing stress concen-
tration [26]. The adhesion strength is higher for the samples
deposited at higher temperatures than the room temperature
deposition samples. The reason for the higher adhesion is
the stress-relieving phenomena taking place during the sub-
strate heating process [27]. The substrate temperature acts as
annealing during the deposition process and relieves stress,
thus increasing the adhesion strength. The graphical repre-
sentation of the adhesion strength is given in Figure 6.

3.3. XRD Analysis. The XRD analysis shows the presence of
amorphous carbon in the DLC coating. The XRD graph is
presented in Figure 7. The sample is kept in an XRD
machine and swept from 20° to 90° angles for analysis [28].
There are no other peaks other than carbon, and the
detected carbon is in amorphous graphite without crystalline
diamond form. It indicates there are sp2 bonds in the devel-

oped films but not sp3, which helps in a further increase in
the hardness of the film [29].

3.4. Wear Test. The coating samples were put through a dry
wear test in a pin-on-disk mode with an aluminium pin as
the counter body. Figure 8 shows the wear track of the
DLC coating. The samples’ coefficients of friction (COF)
range from 0.10 to 0.15. The COF of the high temperature-
DLC sample is marginally greater than the COF of the room
temperature-DLC sample at the same test load [30]. The
COF curves of the SNC-DLC sample have some variations.
During the test, it appears that this sample suffers from abra-
sion wear. Despite this, the COF for both coating samples
(COF0.15) is very low [31].

3.5. Raman Spectroscopy. Raman spectroscopy is a common
technique for identifying diamonds, graphite, and other
carbon-based materials. The Raman spectra have two large
peaks for amorphous carbon: 1200–1450 cm-1 for the D
mode and 1500–1700 cm-1 for the G mode. The G band is
attributed to sp2 graphite-like microdomain graphite-like
layers, whereas the D band is attributed to the bond-angle
disorder in the sp2 graphite-like microdomains.

The tested sample which is used for XRD has been tested
for the Raman spectroscopy. The sample showed the pres-
ence of sp2 bonds majorly in the DLC and the traces of
sp3. The Raman spectra in Figure 9 shows two broad peaks
centred around 1348 cm-1 (D-line) and 1600 cm-1 (G-line).
The peak about 1600 cm-1 could be noticeably different from
the crystalline graphite’s characteristic sharp peak around
1580 cm-1. It demonstrates that the film is a normal DLC
film with a combination of sp2 and sp3 carbon structures.

Figure 8: Wear track of DLC coating.
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4. Conclusion

The DLC thin films have been successfully developed on the
Aluminium 5051 samples by the sputtering deposition
method. The substrate heating during the deposition process
plays a crucial role in the adhesion of the film and its hard-
ness. By changing the sputtering deposition power, the films’
hardness and adhesion can be tailor-made. A total hardness
increment of 71% can be achieved by changing the sputter-
ing power in the deposition. By incorporating substrate heat
and 300W power, the highest hardness can be achieved for
the given aluminium DLC thin film. The adhesion is also
influenced by the substrate temperature as well as power,
and the highest adhesion strength can be achieved for sub-
strate heating and 300W power DLC thin film. XRD and
Raman spectroscopy indicated the presence of amorphous
graphite in the DLC films rather than the crystal diamond
form and is mainly due to the formation of sp2 bonds in
the DLC rather than sp3 bonds.

Data Availability
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