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The goal of this research is to create a novel Schiff base of chitosan polymer derivatives 1a-1j. Nanotechnology is a promising field
since it avoids the usage of hazardous chemicals while also saving time. Using the leaf extract of the pharmacologically valuable
herb Mentha piperita, we described a green synthesis of ZnO NPs. Zinc oxide ions may be easily reduced into ZnO NPs using a
Mentha piperita extract. ZnO NPs were employed as a phytocatalyst in this investigation to make chitosan derivatives. The
synthetic procedure is straightforward, with a short reaction time and a high yield. Our newly synthesized compounds have
been characterized by FTIR and nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR), and morphology analysis
was observed by XRD, SEM, and TEM. In addition, the antibacterial activity was also evaluated against gram-positive bacteria
and gram-negative bacteria. Compound 1b is extremely active against gram-negative bacteria (4.0 μg/mL, E. coli), and
compound 1h is highly active against gram-positive bacteria (6.0μg/mL, S. aureus) compared with standard erythromycin and
other chitosan derivatives. As a result, compounds 1b and 1h could be a high crucial molecule in the development of
antibacterial drugs.

1. Introduction

Antibacterial activity of biopolymers has been broadly stud-
ied for the last years. The (CH) (-1-4)-d-glucosamine) is the
deacetylated structure of chitin, which is extracted from nat-
ural and marine animals [1, 2]. Chitin can be isolated from
microorgans [3], crustacean [4], and bug [5]. Chitin
deacetylation improves its solubility in acid medium while

additionally increasing its antibacterial motion [6, 7]. Anti-
microbial resistance is one of the third most serious con-
cerns affecting human health, according to the WHO [8].
Recent studies have combined antibacterial nanoparticles
with chitosan-linked ZnO composites, which have shown
to have good antibacterial properties [9]. Chitosan, an
adaptable hydrophilic polysaccharide derived from chitin,
has a vast antibacterial range, making it prone to each
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gram-negative and gram-positive microorganism [10]. The
biopolymer is widely employed in bioinformatics applica-
tions as a drug transporter [11], antibacterial [12], antioxi-
dant [13], anticancer [14], and wound dressing agent [15,
16] due to its unique qualities such as harmless, antibacterial
activity, decomposable, and high biocompatibility [17, 18].
Over the last decade, nanomedicine has developed rapidly,
and it now provides promising treatments for bacterial
infections. Because nanoparticles behave differently from
their parent bulk, nanotechnology opens up new possibilities
for medicinal applications [19–22]. The size and size distri-
bution of nanoparticles, as well as their composition, shape,
surface charge, surface chemistry, and surface functionaliza-
tion, hydrophobicity, crystalline phase, crystallite size, and
porosity, are all important factors that influence the physico-
chemical properties and, as a result, the activity of nanoma-
terials [23, 24]. Nanoparticles with antibacterial properties
can act as antibacterial agents or transporters, increasing
antibiotic bioavailability and effectiveness [25]. Metallic
nanoparticles, primarily composed of zinc, silver, or copper,
have been found to have potent antibacterial properties [26].
The antibacterial drug was prepared using low cost, environ-
mental friendliness, synthesizability in ambient atmosphere,
and nontoxicity. A recent study has shown that green syn-
thesis is the most effective method for synthesizing NPs
[27]. Furthermore, ZnO NP is being used in biological and
environmental sectors such as pharmaceutical administra-
tion, biological sensing, biological labelling, gene transfer,
and nanomedicine [28–31]. ZnO NPs have also been
reported to have antibacterial, antifungal, acaricidal, predi-
culicidal, and larvicidal properties [32–36]. Chitosan and
its derivatives are referred to as ecological cleansing useful
resources because they efficiently restrict the growth and
reproduction of harmful bacteria as well as poisonous con-
taminants [37]. Physicochemical and biochemical features
of chitosan derivatives include good antimicrobial activity,
hygroscopic, and embolism. As a result, it has potential uses
in a variety of disciplines, including agriculture, medicines,
cosmetics, food processing, environmental protection, and
biotechnology [38–47]. The chitosan molecule’s containing
enormous number of primary amine and hydroxyl groups
allows for a wide range of chemical changes, resulting in a
new class of biomaterials [48]. Chemical modifications to
chitosan, such as sulfonation [49], amination [50], and
carboxymethylation [51], allow for chemical transformation
of the NH2 and OH groups and the creation of different
functional derivatives. Modified diisocyanate has been
shown to have increased antibacterial activity [52–57]. The
antibacterial activity of chitosan derivatives is shown in
Figure 1. Similarly, the important functional groups in chito-
san can readily react with amine groups to generate the
appropriate chitosan Schiff base with imine characteristic
group (-RC=N-). Chitosan Schiff base derivatives are one
of the finest possibilities for improving antibacterial activity
of chitosan [58]. Based on the above literature report, all the
research work was done by using several amines but none of
the researchers are not using the ethylenediamine react with
C-2 position in chitosan, Schiff base formation in C-5 posi-
tion, and green catalyst of ZnO NPs was used for our

research work. The present work addresses the development
of antibacterial aminoethyl chitosan derivatives and was
characterized by Fourier transform infrared (FT-IR) and
nuclear magnetic resonance (1H NMR and 13C NMR) spec-
troscopy, and morphology and its physical properties were
observed by TEM, SEM, and X- ray diffraction (XRD). Addi-
tionally, their antibacterial activity was evaluated against a
various pathogenic microorganisms.

2. Materials and Methods

2.1. General Methods. All the chemicals and reagents such as
chitosan (degree of deacetylation—75%, Mw141 kDa), acetic
acid, EDA, aromatic aldehydes, ethanol, and DMF are
bought from Sigma Aldrich, India. Melting points of synthe-
sized compounds were recorded in open capillary tubes and
are uncorrected. On a Shimadzu 8201pc (4000–1000 cm-1),
the FT-IR spectra were captured using the kBr disc
approach. A Bruker DRX-300MHz was used to record the
1H NMR and 13C NMR spectra. To obtain NMR spectra,
the compound was dissolved in DMSO-d6. The morphology
of zinc oxide nanoparticles is confirmed by using XRD,
SEM, and TEM. The scanning electron microscope (SEM)
model VP-1450 (LEO, Co., Germany), was used for SEM
analysis. For transmission electron microscopy (TEM) anal-
ysis, an LEO 912 AB instrument was used. TLC was used to
assess the purity of the compounds, with silica-gel as the
adsorbent and 60F254 aluminium sheets as the adsorbent,
and it was visualized by ultraviolet (E-Series UV hand lamp
(254/365nm wave length)).

2.1.1. Swelling Test of Chitosan Polymer. The bulge proper-
ties of the chitosan derivative were investigated in various
media. Preweighted derivative samples (0.05 g for each test)
were immersed in 35mL 0.20M acetic acid, 0.20M HCI,
water, and 0.20M NaOH, respectively [59]. The samples
were withdrawn from the media, wiped with filter paper,
and weighted once they had reached equilibrium swelling
(1 day). Each sample’s swelling ratio was calculated using
the following equation:

Swelling ratio %ð Þ = Wt −
W0
W0

� �
× 100%, ð1Þ

where Wt and W0 represent the weight of the swollen
and dry samples, respectively.

2.2. Preparation of Mentha piperita Leaf Extract. 5 grams of
Mentha piperita leaves was rinsed thoroughly with distilled
water and sanitized with alcohol using a delicate scouring
technique. These leaves were warmed in 100mL of distilled
water at 60°C for 45 minutes. After that, Whatman 41 filter
paper was used to sieve the extract. A cool and dry place was
used to store the filtrate.

2.2.1. Synthesis of Zinc Oxide Nanoparticles. 20mL Mentha
piperita leaf extract was mixed with 60mL 20 percent NaOH
solution to make zinc oxide nanoparticles via precipitation
reaction procedure. Then, in a 250ml measuring glass,
5mL portions of that combination and 60ml refined water
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were added and blended for 1.5 hours. Then, with steady
mixing, zinc acetate (2.1 g in 100ml water) and ammonium
carbonate (0.95 g in 100ml) solutions were added drop by

drop into the measuring glass. After the reaction was com-
pleted, the suspension was mixed at 750 rpm for 1 hour at
30°C. Finally, the precipitate was filtered and rinsed with

Mentha piperita leaf

ZnO NPs

50 mL 20% NaOH+
zinc acetate+

ammonium carbonate

Synthesis of ZnO nanoparticles

Mentha piperita
leaf extract

435°C

Figure 2: Synthesis of ZnO nanoparticles from Mentha piperita.
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Figure 1: The antibacterial activity of chitosan derivatives.
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ammonia solution before being washed with ethanol multi-
ple times. The precipitates were then vacuum dried for 13
hours before being calcined in a hot air oven at 350°C for
4.5 hours (Figure 2). The presence of white powder in the
response combination is a clear evidence of the formation
of ZnO NPs. The zinc oxide nanoparticles were then col-
lected and stored in vacuum for future use.

(1) Synthesis of (2,4,5,6)-2-(((2-Aminoethyl)Amino)Methyl)-
5-((4-Fluroro Benzylidene)Amino-3,6-Dimethoxytetrahydro-
2H-Pyran-4-ol (1a). These are as follows: IR (kBr) (cm−1);
3674 (NH, str), 3278 (OH-str), 2987 (CH-str Ar ring),
2900 (CH, str), 1645 (N=CH, str), 1405 (NH2, bending),
1393 (N-C, str); 1H NMR (DMSO-d6), δ (ppm): 8.77 (s,
1H, N=CH), 7.46–7.81 (m, 4H, F-Ph), 5.15 (s, 2H, NH2),
5.16-3.05 (m, 5H, CS-H), 3.55 (s, 1H, CS-OH), 3.48-3.35
(s, 6H, OCH3-CS), 2.82-2.56 (m, 2H, CH2-NH), 2.78-2.61
(m, 4H, N (CH2)2), 2.0 (s, 1H, NH); and 13C NMR
(DMSO-d6) δ (ppm): 165.4, 130.8, 115.9, 115.8 (6C, F-Ph),
163.8 (1C, N=CH), 114.3, 93.4, 73.5, 65.4, 36.7 (5C, CS),
70.4 (1C, N-CH), 57.9, 55.8 (2C, OCH3-CS), 51.2, 41.4
(2C, N-C in amine).

(2) Synthesis of (2,4,5,6)-2-(((2-Aminoethyl)Amino)Methyl)-5-
((4-Chlorbenzylidene)Amino-3,6-Dimethoxytetrahydro-2H-
Pyran-4-ol (1b). These are as follows: IR (kBr) (cm−1); 3672
(NH, str), 3280 (OH-str), 2989 (CH-str Ar ring), 2902 (CH,
str), 1640 (N=CH, str), 1407 (NH2, bending), 491 (C-Cl); 1H
NMR (DMSO-d6), δ (ppm): 8.76 (s, 1H, N=CH) 7.96–7.51

(m, 4H, Cl-Ph), 5.16 (s, 2H, NH2), 4.17-3.67 (m, 5H, CS-H),
3.55 (s, 1H, CS-OH), 3.45-3.32 (s, 6H, OCH3-CS), 2.85-2.58
(m, 2H, CH2-NH), 2.76 (m, 4H, N (CH2)2), 2.07 (s, 1H,
NH); and 13C NMR (DMSO-d6) δ (ppm): 163.5 (1C,
N=CH), 135.4, 125.3, 120.4, 116.5 (6C, Cl-Ph), 114.0, 93.2,
73.3, 65.6, 36.9 (5C, CS), 71.5 (1C, N-CH), 57.6, 55.4 (2C,
OCH3-CS), 51.0, 41.3 (2C, N-C in amine).

(3) Synthesis of (2,4,5,6)-2-(((2-Aminoethyl)Amino)Methyl)-
5-((4-Hydroxybenzylidene)Amino-3,6-Dimethoxytetrahydro-
2H-Pyran-4-ol (1c). These are as follows: IR (kBr) (cm−1);
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Figure 3: TEM image of pure (a) ZnO, (b) ZnO NPs, and (c) particle size distribution.

50 nm

Figure 4: SEM image of ZnO nanoparticles.

4 Journal of Nanomaterials



3676 (NH, str), 3286 (OH-str), 2991 (CH-str Ar ring), 2904
(CH, str), 1644 (N=CH, str), 1408 (NH2, bending), 1395 (N-
C, str); 1H NMR (DMSO-d6), δ (ppm): 10.62 (s, 1H, Ph-
OH), 8.70 (s, 1H, N=CH), 7.87,(m, 4H, OH-Ph), 5.12 (s,
2H, NH2), 4.20-3.63 (m, 5H, CS-H), 3.56 (s, 1H, CS-OH),
3.47-3.33 (s, 6H, OCH3-CS), 2.80-2.55 (m, 2H, CH2-NH),
2.74-2.65 (m, 4H, N(CH2)2), 2.05 (s, 1H, NH); and 13C
NMR (DMSO-d6) δ (ppm): 163.3 (1C, N=CH), 161.7,
129.5, 120.2, 116.5 (6C, OH-Ph), 112.1, 92.0, 72.2, 64.6,
37.9 (5C, CS), 71.0 (1C, N-CH), 57.8, 55.6 (2C, OCH3-CS),
51.3, 41.2 (2C, N-C in amine).

(4) Synthesis of (2,4,5,6)-2-(((2-Aminoethyl)Amino)Methyl)-
5-((4-Methoxybenzylidene)Amino-3,6-Dimethoxytetrahydro-
2H-Pyran-4-ol (1d). These are as follows: IR (kBr) (cm−1);
3679 (NH, str), 3280 (OH-str), 2981 (CH-str Ar ring),
2906 (CH, str), 1631 (N=CH, str), 1404 (NH2, bending),
1391 (N-C, str); 1H NMR(DMSO-d6), δ (ppm): 8.79 (s,
1H, N=CH) 8.13-7.72 (m, 4H, OCH3-Ph), 5.17 (s, 2H,
NH2), 4.17-3.66 (m, 5H, CS-H), 3.87 (s, 3H, OCH3), 3.58
(s, 1H, CS-OH), 3.52-3.36 (s, 6H, OCH3-CS), 2.84-2.57 (m,
2H, CH2-NH), 2.70-2.63 (m, 4H, N(CH2)2), 2.05 (s, 1H,
NH); and 13C NMR (DMSO-d6) δ (ppm): 163.9 (1C,
N=CH), 160.6, 130.2, 124.3, 114.5 (6C, OCH3-Ph), 112.4,
92.3, 72.4, 64.3, 37.5 (5C, CS), 71.5 (1C, N-CH), 57.4, 55.7
(2C, OCH3-CS), 55.3 (1C, OCH3-Ph), 51.3, 41.2 (2C, N-C
in amine).

(5) Synthesis of (2,4,5,6)-2-(((2-Aminoethyl)Amino)Methyl)-
5-((4-Dimethylamino)Bezylidene)Amino)-3,6-Dimethoxyte-
trahydro-2H-Pyran-4-ol (1e). These are as follows: IR (kBr)
(cm−1); 3677 (NH, str), 3285 (OH-str), 2988 (CH-str Ar
ring), 2910 (CH, str), 1642 (N=CH, str), 1404 (NH2, bend-
ing), 1392 (N-C, str); 1H NMR(DMSO-d6), δ (ppm): 8.72
(s, 1H, N=CH), 7.58-6.75 (m, 4H, N(CH3)2-Ph), 5.10 (s,
2H, NH2), 4.19-3.69 (m, 5H, CS-H), 3.58 (s, 1H, CS-OH),
3.50-3.31 (s, 6H,OCH3-CS), 3.02 (s, 6H, N(CH3)2), 2.80-
2.50 (m, 2H, CH2-NH), 2.73-2.65 (m, 4H, N(CH2)2), 2.07
(s, 1H, NH); and 13C NMR (DMSO-d6) δ (ppm): 163.7
(1C, N=CH), 152.6, 129.9, 122.8, 113.6, 21.4 (8C,
N(CH3)2-Ph), 112.6, 92.5, 72.7, 64.6, 37.8 (5C, CS), 71.8
(1C, N-CH), 57.8, 55.7 (2C, OCH3-CS), 51.3, 41.0 (2C, N-
C in amine).

(6) Synthesis of (2,4,5,6)-2-(((2-Aminoethyl)Amino)Methyl)-
3,6-Dimethoxy-5-((4-Nitrobenzylidene)Amino)Tetrahydro-
2H-Pyran-4-ol (1f). These are as follows: IR (kBr) (cm−1);
3670 (NH, str), 3276 (OH-str), 2978 (CH-str Ar ring),
2908 (CH, str), 1634 (N=CH, str), 1546 (N-O, str), 1408
(NH2, bending), 1395 (N-C, str); 1H NMR(DMSO-d6), δ
(ppm): 8.73 (s, 1H, N=CH), 8.51–8.32 (m, 4H, NO2-Ph),
5.19 (s, 2H, NH2), 4.20-3.60 (m, 5H, CS-H), 3.58 (s, 1H,
CS-OH), 3.55-3.34 (s, 6H, OCH3-CS), 2.88-2.58 (m, 2H,
CH2-NH), 2.77-2.63 (m, 4H, N(CH2)2), 2.09 (s, 1H, NH);
and 13C NMR (DMSO-d6) δ (ppm): 164.5 (1C, N=CH),
148.3, 136.1, 135.3, 130.1, 129.5, 123.6 (6C, NO2-Ph),
112.1, 92.2, 72.3, 64.4, 37.5 (5C, CS), 91.8 (1C, N-CH),
57.8, 55.3 (2C, OCH3-CS), 51.3, 41.4 (2C, N-C in amine).

(7) Synthesis of 2,4,5,6)-2-(((2-Aminoethyl)Amino)Methyl)-
5-((2-Hydroxybenzylidene) Amino)-3,6-Dimethoxytetrahy-
dro-2H-Pyran-4-ol (1g). These are as follows: IR (kBr)
(cm−1); 3672 (NH, str), 3284 (OH-str), 2982 (CH-str Ar
ring), 2911 (CH, str), 1648 (N=CH, str), 1403 (NH2,bend-
ing), 1392 (N-C, str); 1H NMR (DMSO-d6), δ (ppm): 8.78
(s, 1H, N=CH) 7.82–7.11 (m, 4H, OH-Ph), 5.46 (s, 1H,
OH-Ph), 5.16 (s, 2H, NH2), 4.22-3.69 (m, 5H, CS-H), 3.52
(s, 1H, CS-OH), 3.52-3.32 (s, 6H, OCH3-CS), 2.83-2.53 (m,
2H, CH2-NH), 2.78-2.64 (m, 4H, N(CH2)2), 2.05 (s, 1H,
NH); and 13C NMR (DMSO-d6) δ (ppm): 163.5 (1C,
N=CH), 162.7, 136.5, 132.8, 124.5, 123.4, 120.4 (6C, OH-
Ph), 112.0, 92.1, 72.2, 64.3, 37.4 (5C, CS), 91.2 (1C,N-CH),
57.8, 55.5 (2C, OCH3-CS), 51.5, 42.5 (2C, N-C in amine).

(8) Synthesis of (2,4,5,6)-2-(((2-Aminoethyl)Amino)Methyl)-
5-((4-Hydroxy-3-Methoxybenzyline)Amino)-3,6-Dimethoxy-
tetrahydro-2H-Pyran-4-ol (1h). These are as follows: IR
(kBr) (cm−1); 3670 (NH, str), 3275 (OH-str), 2980 (CH-str
Ar ring), 2903 (CH, str), 1635 (N=CH, str), 1406 (NH2,
bending), 1390 (N-C, str); 1H NMR (DMSO-d6), δ (ppm):
8.69 (s, 1H, N=CH), 7.42–6.75 (m, 3H, vanillin), 5.35 (s,
1H, OH-Ph), 5.25 (s, 2H, NH2), 4.26-3.66 (m, 5H, CS-H),
3.74 (s, 3H, OCH3), 3.59 (s, 1H, CS-OH), 3.53-3.31 (s, 6H,
OCH3-CS), 2.86-2.58 (m, 2H, CH2-NH), 2.79-2.67 (m, 4H,
N(CH2)2), 2.09 (s, 1H, NH); and 13C NMR (DMSO-d6) δ
(ppm): 163.2 (1C, N=CH), 154.5, 149.6, 130.4, 125.2, 117.4,
110.5 (6C, vanillin), 112.3, 92.8, 72.6, 64.5, 37.7 (5C, CS),
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91.3 (1C,N-CH), 57.5 (1C, OCH3), 57.0, 55.2 (2C, OCH3-
CS), 51.7, 42.5 (2C, N-C in amine).

(9) Synthesis of (2,4,5,6)-2-(((2-Aminoethyl)Amino)Methyl)-
3,6-Dimethoxy-5-((3-Phenylallylidene)Amino)Tetrahydro-
2H-Pyran-4-ol (1i). IR (kBr) (cm−1); 3682 (NH, str), 3281
(OH-str), 2982 (CH-str Ar ring), 2907 (CH, str), 1643
(N=CH, str), 1410 (NH2,bending), 1391 (N-C-, str); 1H
NMR (DMSO-d6), δ (ppm): 8.77 (s, 1H, N=CH), 7.62,
7.41, 7.35 (m, 5H, Ph), 7.05, 6.44 (d, 2H, CH=CH, J = 7:0)
5.19 (s, 2H, NH2), 4.18-3.69 (m, 5H, CS-H), 3.59-3.34 (s,
6H, OCH3-CS), 3.38 (s, 1H, CS-OH), 2.88-2.59 (s, 2H,
CH2-NH), 2.71 (m, 4H, N(CH2)2), 2.01 (s, 1H, NH); and
13C NMR (DMSO-d6) δ (ppm): 163.6 (1C, N=CH), 135.2,
128.9, 128.6, 127.9 (6C, Ph), 131.5 (2C,C=C, Ph), 113.2,
92.4, 72.2, 64.1, 37.3 (5C, CS), 91.6 (1C, N-CH), 57.4, 55.8
(2C, OCH3-CS), 51.3, 42.5 (2C, N-C in amine).

(10) Synthesis of (2,4,5,6)-2-(((2-Aminoethyl)Amino)-
Methyl)-5-((Furan-2-yl-Methylene)Amino)-3,6-Dimethoxyte-
trahydro-2H-Pyran-4-ol (1j). IR (kBr) (cm−1); 3686 (NH,
str), 3284 (OH-str), 2983 (CH-str Ar ring), 2902 (CH, str),
1637 (N=CH, str), 1406 (NH2, bending), 1398 (N-C, str);
1H NMR (DMSO-d6), δ (ppm): 8.76 (s, 1H, N=CH), 7.75-
6.96 (m, 3H, furfural), 5.16 (s, 2H, NH2), 4.18-3.66 (m, 5H,
CS-H), 3.52-3.36 (s, 6H, OCH3-CS), 3.33 (s, 1H, CS-OH),
2.85-2.55 (s, 2H, CH2-NH), 2.75-2.62 (m, 4H, N(CH2)2),
2.03 (s, 1H, NH); and 13C NMR (DMSO-d6) δ (ppm):
163.7 (1C, N=CH), 155.3, 148.2, 123.5, 114.8 (4C, furfural),
112.7, 92.6, 72.5, 64.4, 37.8 (5C, CS), 91.7 (1C,N-CH), 57.5,
55.1 (2C, OCH3-CS), 51.8, 42.9 (2C, N-C in amine).

2.3. In Vitro Antimicrobial Screening. Using a previously
reported approach [60], the antibacterial activity of the com-
pounds 1a-1j was evaluated against the bacterial strains
Staphylococcus aureus (ATCC-25923), Streptococcus pneu-
moniae, Escherichia coli (ATCC-25922), and Pseudomonas
aeruginosa (ATCC-27853). The minimal inhibitory concen-
tration for each of the produced substances was determined.

The test samples were dissolved in DMSO (dimethylsulfox-
ide) at a concentration of 64μg/mL for each sample. Various
dilutions (64, 32, and 0.5μg/mL) were made using twofold
dilutions. The microbe suspensions containing 106CFU/
mL were injected into the matched wells and incubated at
36°C for 24 hours.

3. Results and Discussion

3.1. Characterization of Zinc Oxide Nanoparticles

3.1.1. Transmission Electron Microscopy (TEM). The size and
morphology of the ZnO nanoparticles were determined
using a TEM examination. Figure 3 shows a TEM image of
both pure ZnO and ZnO NPs. In the range of 50 nm, the
TEM image clearly shows the spherical shape of the ZnO
NPs.

3.1.2. Scanning Electron Microscopy (SEM). SEM analysis
revealed well-defined, uniformly spherical ZnO NPs with

Table 1: Antibacterial activity of gram negative and gram positive
for compounds 1a-1j with their MIC values.

Compounds no
Gram negative (μg/

mL)
Gram positive (μg/mL)

E. coli P. aeruginosa S. pneumonia S. aureus

1a 6 30 5 14

1b 4 6 32 15

1c 8 12 6 13

1d 34 18 9 10

1e 10 20 12 30

1f 16 7 6 15

1g 20 8 16 12

1h 18 9 13 6

1i 9 10 26 14

1j 11 16 18 9

Erythromycin 6 6 4 8

Compound-1b is highly active
in gram negative E. coli

a

d

c

b

a

d

c

b

a = 4.0 𝜇g/mL, E. coli, b = 32 𝜇g/mL
c = DMSO, d = standard

a = 6.0 𝜇g/mL, S. aureus, b = 32 𝜇g/mL
c = DMSO, d = standard

Compound-1h is highly active
in gram positive S. aureus

Figure 7: Antibacterial assay of highly active compounds with erythromycin.
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no aggregation and a very small size. Mentha pipertia has a
lot of charged surfaces that are great for binding metal ions
from their watery precursor solution. Figure 4 displays a
scanning electron microscope image of zinc oxide nanopar-
ticles. The SEM picture revealed a nanoparticle with a diam-
eter of 50 nm and a roughly spherical shape.

3.1.3. XRD (or) X-Ray Diffraction Study. An X-ray diffrac-
tion investigation was carried out on chitosan and chitosan
derivatives. Figure 5 [61] shows chitosan with very wide
peaks at 2θ = 15° and 2θ = 30°. The chitosan derivatives dis-
played two faint peaks at 2θ of 15° and 30° in Figure 5. The
peaks establish for chitosan at 2θ = 15° vanished in chitosan
derivatives while the very broad peaks at 30° became weak,
showing that chitosan has moral compatibility and good for-
mation of porous xerogel network. According to the XRD
results, the chitosan derivatives are amourphous in nature.

3.1.4. Recovery of Catalyst. Catalyst recovery is important in
the biosynthetic process. We tested their recyclability twice

with essentially equal catalytic activity using the Schiff base
of chitosan derivative (1a-1j) zinc oxide nanoparticle reac-
tion. Following the addition of DMF, the ZnO NPs were
centrifuged and washed with EtOH to remove any residual
product.

3.2. Chemistry

3.2.1. Preparation of Chitosan Analogue (1, 1a–1j). Chitosan
(2 g, deactylated) was dissolved in 20ml of 1% acetic acid
solution (pH = 3:6 – 3:7), and ethylenediamine (0.7mL)
was reacted at 100°C for 4 hrs using ZnO NPs as a green cat-
alyst to get compound 1. After adding 1M NaOH for adjust-
ing the (pH = 4:0) of compound 1. A compound 1 (2.5 g
dissolved in acetic acid with ethanol) and 4-
flurobenzaldehyde (1.2 g) in ethanol stirring for 8 hrs at
60°C with ZnO NPs used as a catalyst. The obtained white
gel indicates the formation of compound 1a. The resulting
product was precipitated in a solution of 5% sodium hydrox-
ide. The precipitate was filtered and washed with ice-cold

Chitosan moiety is essential for activity

N

NH
NH2

CH Formation of imine also increases
the antibacterial activity

Formation of imine also increases
the antibacterial activity

Compound-1b, gram negative,
E. Coli (4.0 𝜇g/mL)

Compound-1h, gram positive,
S. aureus (6.0 𝜇g/mL)

Presence of hydroxyl group in para
position enhance the activity

COMPOUND-1h

HO CH

H3CO

N

NH

HO

O
O O

n

NH2

COMPOUND-1b

Presence of chloro group in para
position enhance the activity

Chitosan moiety is essential for activity

Easily reactive site favoured
to improve the activity

Easily reactive site favoured
to improve the activity

Cl

HO

O
O O

n

Figure 8: SAR relationship of highly active compounds.
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water and ethanol to remove the unreactants of aldehyde
and ketone. The final product was soluble in DMF. TLC
was used to track the reaction’s progress. In TLC, the eluting
solvents were hexane and ethyl acetate (4 : 6). Compounds
1b–1j were synthesized using the technique described above.

The novel chitosan compounds were established by ana-
lytical technique, such as FT-IR, 1H NMR, and 13C NMR as
seen in Supplementary Materials (available here). The FT-IR
spectra exhibited absorption bands (1a–1j) at 3674, 3278,
2987, 2900, 1645, 1405, and 1393 cm-1, confirming NH,
OH, Ar-H, CH, N=CH, NH2, and N-C groups. The 1H
NMR spectra (1a–1j) indicate chemical shift values at
10.60, 8.79–8.69, 8.13–7.46, 5.16–5.10, 3.58-3.52, 3.45, and
2.82 ppm, confirming OH, N=CH, Ph-CH, NH2,CS-OH,
OCH3 and CH2-NH protons, respectively. The 13C NMR
showed (1b–1j) signals at 164.5–163.3, 91.2–71.0, 57.9-55.4,
and 51.3-41.0 ppm, confirming the N=CH, N-CH, OCH3,
and N-C of carbon atoms. Scheme 1 illustrates the synthesis
of chitosan derivatives.

3.2.2. Fourier Transform Infrared (FTIR) Spectroscopy. In
FTIR spectra of chitosan, NH peak was observed at
3674 cm-1‑which can be assigned to stretching vibration of
amino group, and another peak observed at 3278 cm-1 can
be attributed to hydroxyl group (O-H, str). Similarly, the
stretching vibration of carbon and hydrogen in aromatic
ring was observed at 2987 cm-1. The weak band at
2900 cm-1 can be assigned to symmetric stretching of car-
bon–hydrogen (C-H, str), and a sharp characteristic peak
at 1645 cm-1 can be attributed to stretching vibration of
imine linkage (N=CH, str). In the chitosan-Schiff base, the
bending vibration of amide observed at 1405 cm-1 can be
assigned to (NH2, bending), and another sharp peak at
1393 cm-1 can be attributed to stretching vibration of (N-C,
str). The FTIR spectrum of compound 1a is present in
Figure 6.

3.3. In Vitro Antibacterial Activity Analysis. The antibacte-
rial activity of chitosan derivatives of 1a-1j was tested
in vitro against S. aureus (ATCC-25923), S. pneumoniae, E.
coli (ATCC-25922), and P. aeruginosa (ATCC-27853). As a
control, erythromycin was utilized. Compound 1b (4.0μg/
mL, E. coli) is highly active, and compound 1h (6.0μg/mL,
S. aureus) is highly active compared with the standard drug.
The antibacterial assay images are present in Figure 7, and
MIC values are shown in Table 1.

3.4. Structure Activity Relationship. The structure activity
relationship is a relationship that exists between a molecule
chemical structure and its antibacterial activity. SAR analysis
allows for the identification of chemical groups responsible
for inducing antibacterial activity in the organism. The
SAR was evaluated using the antibacterial activity of chito-
san derivatives. The compounds 1b and 1h are highly active
compared with control erythromycin and other compounds.
Because of the reason due to the presence of chloro (Cl) and
hydroxyl (-OH) groups at para position in phenyl moiety, it
was exhibited to be highly active against 1b (4.0μg/mL, E.
coli, gram −ve) and 1h (6.0μg/mL, S. aureus, gram +ve) bac-

teria when compared to standard erythromycin. Figure 8
demonstrates the SAR of highly active compounds.

4. Conclusions

Chitosan possesses different functional groups (i.e., hydroxyl
and amine groups) that help to prepare new chitosan deriv-
atives. The present study intends to develop newly synthe-
sized Schiff base of chitosan polymer derivatives 1a-1j so
we are focused the green synthetic method for the synthesis
of zinc oxide nanoparticles (ZnO NPs) using extract of
Mentha piperita, which can reduce zinc oxide ions into
ZnO NPs in a simple way. The newly formed Schiff bases
1a-1j were synthesized using ZnO NPs as a catalyst and were
confirmed by FTIR, NMR, TEM, SEM, and XRD. Moreover,
the antibacterial activity revealed that compound 1b (4.0μg/
mL, E. coli) is highly active against gram-negative bacteria,
and compound 1h (6.0μg/mL, S. aureus) is moderate active
against gram-positive bacteria. In future, compounds 1b and
1h can be developed as an antibacterial drug.
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