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Spinel ferrites nanomaterials are magnetic semiconductors with excellent chemical, magnetic, electrical, and optical properties
which have rendered the materials useful in many technological driven applications such as solar hydrogen production, data
storage, magnetic sensing, converters, inductors, spintronics, and catalysts. The surface area of these nanomaterials contributes
significantly to their targeted applications as well as the observed physical and chemical features. Experimental doping has
shown a great potential in enhancing and tuning the specific surface area of spinel ferrite nanomaterials while the attributed
experimental challenges call for viable theoretical model that can estimate the surface area of doped spinel ferrite
nanomaterials with high degree of precision. This work develops stepwise regression (STWR) and hybrid genetic algorithm-
based support vector regression (GBSVR) intelligent model for estimating specific surface area of doped spinel ferrite
nanomaterials using lattice parameter and the size of nanoparticle as descriptors to the models. The developed hybrid GBSVR
model performs better than STWR model with the performance improvement of 7.51% and 22.68%, respectively, using
correlation coefficient and root mean square error as performance metrics when validated with experimentally measured
specific surface area of doped spinel ferrite nanomaterials. The developed GBSVR model investigates the influence of nickel,
yttrium, and lanthanum nanoparticles on the specific surface area of different classes of spinel ferrite nanomaterials, and the
obtained results agree excellently well with the measured values. The accuracy and precision characterizing the developed
model would be of immense importance in enhancing specific surface area of doped spinel ferrite nanomaterial prediction with
circumvention of experimental stress coupled with reduced cost.

1. Introduction

Spinel ferrite nanomaterials have gained a significant and
considerable attention lately due to their unique chemical,
physical, magnetic, electrical, and optical features that are
of great interest in many technological advancement and
applications such as gas sensor, drug-delivery, photocata-
lysts, water splitting, spintronics, and supercapacitors
[1–4]. Other important characteristics of spinel ferrite nano-

materials that promote their wider applicability include
stability, being less expensive, and ease of preparation [5].
The specific surface area of spinel ferrite nanomaterials con-
tributes significantly to their technological applications espe-
cially during organic pollutant treatment [6–8]. The
significance of specific surface area and other physical prop-
erties of catalysts to pollutant treatment has been treated
elsewhere [9–11]. Tuning of specific surface area of spinel
ferrite nanomaterials is often carried out experimentally
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through doping whereby foreign and external materials are
incorporated into the parent spinel ferrite ceramic com-
pounds and consequently leads to alteration in magnetic,
electrical, and optical properties coupled with change in spe-
cific surface area of the nanomaterials [12–15]. This work
models the specific surface area of spinel ferrite nanomater-
ials doped with foreign materials through stepwise
regression-based model and hybrid genetic algorithm-
based support vector regression (GBSVR) intelligent compu-
tational method using lattice parameter and the size of the
nanomaterial as descriptors to the models.

Using crystal structure as a yardstick of classification,
ferrite family can be hexagonal, garnets, or spinel ferrite
[6]. The unique properties of spinel ferrites among other fer-
rite family distinguish them from others and have offered
them a place in several technological applications. Interstitial
sites in spinel ferrite over which cations are distributed
include octahedral and tetrahedral sites [16–18]. Variation
of charge distribution in these sites alters the specific surface
area as well as other physical and chemical properties of the
nanomaterials while the introduction of external materials in
the crystal structure redistributes charges within the avail-
able sites [19, 20]. Doping that accompanies specific surface
area and other physical properties enhancement distorts the
lattice structure of the parent spinel which makes lattice dis-
tortion becomes significant while modeling the influence of
dopants incorporation on the specific surface area of the
nanomaterials. Inclusion of the size of nanomaterial among
the descriptors is of importance since the exhibited interest-
ing physical and chemical properties of spinel ferrite nano-
materials are constrained to the nanoscale size of the
materials and display distinct features when investigated
outside nanoscale [7]. A hybrid of genetic and support vec-
tor regression algorithms presented in this work exclusively
models the nonlinear relationship between the specific sur-
face area and the descriptors which include distorted lattice
parameter and the size of nanomaterial while the developed
stepwise regression offers empirical relationship with signif-
icant deviation due to insufficient strength in addressing the
nonlinear relationship existing between the descriptors and
specific surface area.

Support vector regression (SVR) belongs to the class of
intelligent algorithms with fast computing potentials and
excellent efficiency in addressing complex regression prob-
lems [21, 22]. The algorithm is formulated using structural
risk minimization principle and minimizes the empirical
error through epsilon-insensitive loss function control
[23–25]. Statistical learning theory upon which the algo-
rithm forms the basis helps in error margin customization
through hyperplane maximization. These features have
made practical application of SVR algorithm in addressing
real-life challenges and problems inevitable in various field
of study [26–29]. The hyperparameters contained in SVR
algorithm control the precision and accuracy of SVR-based
algorithm and can be altered through various means which
include grid search approach, manual search approach, or
metal-heuristic approach [30, 31]. Apart from robustness,
precision, and avoidance of local minimal while using
metal-heuristic hyperparameter optimization, time conser-

vation is also a plus to metal-heuristic approach of
hyperparameter selection. The metal-heuristic algorithm
implemented in this work is genetic algorithm with charac-
teristics of fast convergence and avoidance of premature
convergence [32].

Stepwise regression (STWR) is a regression algorithm
through which functions and equations that directly link
the descriptors with the desired target are generated through
either forward selection addition process or backward dele-
tion procedures [33, 34]. It weighs the significance of every
descriptors based on some defined criteria before inclusion
in the regression function. The algorithm also allows imple-
mentation of high-order polynomials as well as interactions
of descriptors into regression function. The uniqueness of
this algorithm has enjoyed a wide range of real life applica-
tions in science and engineering field [35–39]. This work
also develops and implements STWR algorithm for model-
ing the specific surface area of doped spinel ferrite nanoma-
terials using lattice parameter and the size of nanomaterials
as descriptors.

The road map for the remaining part of the manuscript
is organized as follows: Section 2 presents mathematical for-
mulation of support vector regression algorithm, stepwise
regression algorithm, and physical principles governing the
operation of population-based optimization genetic algo-
rithm. Section 3 presents the computational hybridization
of support vector regression and genetic algorithm as well
as the descriptions with details of data acquisition. The
results are presented and discussed in Section 4 of the man-
uscript with inclusion of the results of algorithm compari-
son, while Section 5 concludes and presents the summary
of the main findings of the research work.

2. Mathematical Background of the
Developed Algorithms

The mathematical formulation of the intelligent support
vector regression algorithm is presented in this section
coupled with the description of genetic algorithm. The
section also contains the description of the implemented
stepwise regression algorithm.

2.1. Support Vector Regression Intelligent Algorithm. Con-
sider κ number of samples of data set defined as ðιj, S∗j Þ,
where j = 1, 2,⋯, κ ⊂ℝd . The estimated specific surface area
of doped spinel ferrite nanomaterials using the proposed
support vector regression- (SVR-) based model is repre-
sented by S while the measured values of specific surface area
from which patterns are to be acquired and drawn are repre-
sented by S∗j . The descriptors to the proposed model which
include the size of doped spinel ferrite nanomaterials and
lattice distortion as measured by the lattice parameter are
represented in regression equation as ιj. The support vector
regression function is presented in Equation (1) [40, 41].

S = δ, ιj
� �

+ ρ, ð1Þ
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where Sj ∈ℝd , ιj ∈ℝd , and ρis the bias of the regression
function, and δ is the weight vector to be determined and
optimized within support vector regression formulation.

Euclidean norm kδkminimization in actualization of SVR
objectives requires minimization of Equation (2) subjected to
conditions and constraints itemized in Equation (3).

δk k2
2 + C〠

κ

j=1
ψj + ψ∗

j

� �
, ð2Þ

where C is the penalty factor that strongly influence the
performance of the model.

S∗j − δ, ιj
� �

− ρ ≤ ε + ψj

δ, ιj
� �

+ ρ − S∗j ≤ ε + ψ∗
j

ψj, ψ∗
j ≥ 0

* ��������
: ð3Þ

Modification of complex optimization problem contained
in Equation (2) includes nonzero positive slack variables (ψj,
ψ∗
j ) that have potentials of controlling further possible con-

straints that might hinder actualization of error minimization
beyond the epsilon ε threshold [42, 43]. Introduction of
Lagrange multipliers (χ, χ∗) enhances dual problem transfor-
mation which aims at minimizing Equation (4) subjected to
conditions presented in Equation (5).

−
1
2 〠

κ

j,1=1
χ j − χ∗

j

� �
χi − χ∗

ið Þγ ιj, ιi
� �

− ε〠
κ

j=1
χj + χ∗

j

� �
+ 〠

κ

j=1
χi − χ∗

ið Þ,

ð4Þ

〠
κ

j=1
χj − χ∗

j

� �
= 0, χj, χ∗

j ∈ 0, C½ �: ð5Þ

χ and χ∗ are Lagrange multipliers.
It should be noted that γðιj, ιiÞ in Equation (4) represents

kernel function which can be polynomial, sigmoid,
Gaussian, or other viable functions with distinct features.
The function that best mapped the lattice distortion and size
of nanoparticles to high feature space is Gaussian function
presented in Equation (6) [44].

γ ιj, ιi
� �

= ιj, ιi
� �

= exp ω ιj − ιi
		 		2� �

, ð6Þ

where ω is the kernel parameter.
The final regression function after transformation is pre-

sented in Equation (7).

S ιð Þ = 〠
κ

j=1
χj − χ∗

j

� �
γ ιj, ι
� �

+ ρ: ð7Þ

The kernel parameter (ω) of the chosen kernel function,
the maximum allowable deviation (ε) of the estimated spe-
cific surface area from the measured value, and the penalty

factor are optimized using genetic algorithm in this research
work.

2.2. Genetic Algorithm. Genetic algorithm belongs to the
class of well explored evolutionary optimization algorithm
which mimics and replicates natural evolution [45, 46]. Its
development and implementation might be in binary or
continuous form depending on the nature of the optimiza-
tion problem to be handled since binary type caters for dis-
crete space together with continuous space. Three operators
that definitely feature in genetic algorithm principles include
selection, crossover, and mutation. Before selecting best can-
didate through fitness function evaluation, a population
matrix needs to be generated randomly and houses probable
solutions within the search space [47, 48]. Crossover opera-
tion produces offsprings from the defined probable solutions
called parents after the implementation of selection
operator. Mutation operation aids in genetic diversity
maintenance and prevents local minimal convergence. The
processes are repeated over a defined number of generations
until stopping conditions are satisfied. Elitism inscribes
robustness and effectiveness into genetic algorithm and
enhances the optimality of the algorithm [49], although
canonical genetic algorithm does not include elitism as an
operator and among its functions is prevention of the best
solution from undergoing mutation process. This helps in
transference and preserving of best solutions from one gen-
eration to the subsequent generations.

2.3. Mathematical Background of Stepwise Regression. Step-
wise regression is a class of linear regression method which
utilizes iterative construction of regression function in a step
by step manner [33, 34]. Stepwise regression equation is pre-
sented in matrix form as shown in Equation (8) in which X
and β, respectively, represent descriptor vector and coeffi-
cient vector of X.

y = Xβ + ε, ð8Þ

where y = ½y1, y2, y3 ⋯ yk�T , X = ½xT 1, xT 2, xT 3, xTk�T , β =
½β0, β1, β2,⋯::βn−1�, and ε = ½ε1, ε2, ε3 ⋯ εk�T .

It should be noted that the length of β is the length of
descriptors which is two (the lattice parameter of doped spi-
nel ferrite nanomaterials and the size of the nanomaterials)
in this problem. Stepwise regression algorithm aims at itera-
tively and recursively determining the link between the
descriptors and the target by weighing the contribution of
each of the descriptors [50]. However, metrics adopted in
adding and deleting descriptors include adjusted R2,
Bayesian Information Criteria, Akaike Information Criteria,
and Sum of Squared Error. The estimation strength of each
of these criteria is judged using root mean square error
(RMSE) of the tested samples. The procedures for adding
and deleting descriptors are termed forward selection and
backward elimination, respectively [33]. The choice of either
of these methods does not in any way often affect the accu-
racy of the resulting regression function. However, one may
save computational time than the other. In forward selection
process, one descriptor is selected and added to regression
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function in the first step before adding the second descriptor
after ensuring that the best fit is provided by its addition.
The process continues until all the descriptors are added
after satisfying some requirement such as adjusted R2,
Bayesian Information Criteria, Akaike Information Criteria,
and Sum of Squared Error. In backward elimination process,
the development of regression function begins with inclu-
sion of all the descriptors while one by one elimination
follows after inability to meet up with the defined require-
ment and criteria. The choice of stepwise regression becomes
significant in the addressed problem to ascertain the
potential of nonlinear model in addressing and establishing
the relationship between lattice parameter, nanomaterial
size, and specific surface area of doped spinel ferrite
nanomaterials.

3. Computational Methodology of the
Developed Model

The details of the computational hybridization of support
vector regression and genetic algorithm are presented here.
This section also contains the details of the employed dataset
and the results of the initial statistical analysis performed on
the dataset.

3.1. Acquisition and Description of Spinel Ferrite
Nanomaterial Dataset. The lattice parameter of doped spinel
ferrite nanomaterials obtained from X-ray diffraction analy-
sis serves as the descriptor to the developed hybrid GBSVR
model. The model also factors in the size of nanomaterial
as its descriptor for estimating the specific surface area of
spinel ferrite nanomaterial. The lattice distortion and the
size of the nanomaterials with their corresponding specific
surface area for forty spinel ferrite nanomaterials doped with
different nanoparticles are extracted from the literature for
the model development [5, 7, 8, 18, 51–55]. The lattice strain
as well as structural distortion in lattice structure of the par-
ent spinel ferrite nanomaterial resulted from the introduced
dopants definitely alters the material specific surface area.
Table 1 presents the outcomes of statistical parameters eval-
uated on the dataset.

Statistical parameters are evaluated on the lattice param-
eter, size of nanomaterial, and the measured specific surface
area of doped spinel ferrite nanomaterials. The presented
average (mean) values in the table as well as maximum
and minimum values collectively reflect the overall content
of the employed dataset. The significance of the standard
deviation analysis presented in the table is to give a useful
insight about the dispersion of the values of specific surface
area and descriptors for different spinel ferrite nanomaterials
doped with external materials. The correlation coefficients

between the measured specific surface area and each of the
descriptors reveal the potentialities of nonlinear model in
establishing the relationship between specific surface area
and descriptors. This gives an insight that the proposed
hybrid genetic algorithm-based support vector regression
(GBSVR) has potentials to outperform the proposed step-
wise regression (STWR) that fails to incorporate nonlinear-
ity in its operational modalities.

3.2. Computational Development of Proposed Hybrid Genetic
Algorithm-Based Support Vector Regression. Strong depen-
dence of the performance of support vector regression-
based model on the combinatory choice of hyperparameters
necessitates proper tuning and optimization of hyperpara-
meters which include the maximum allowable deviation
(epsilon), penalty factor, and kernel parameter of the best
kernel function. The computational development of the pro-
posed hybrid GBSVR model was conducted within comput-
ing environment of MATLAB. Dataset partitioning was
carried out into training and testing set using 8 : 2 ratio while
dataset randomization precedes data separation. Randomi-
zation promotes even, uniform, and just distribution of data
points so that the possibility of validating and testing model
on tasks that the model fails to learn due to insufficient data
dispersion is prevented. With forty total number of doped
spinel ferrite nanomaterials investigated, thirty-two doped
compounds were employed in pattern acquisition during
training stage, while the remaining eight doped compounds
were utilized in evaluating the future performance of the
model. The following procedures summarize the description
of support vector regression hybridization with the genetic
algorithm for performance enhancement.

Step 1. Population matrix: every chromosome in the popula-
tion matrix carries information regarding the epsilon, pen-
alty factor, and kernel parameter in a known and defined
order. The kernel parameter is contained in the chosen ker-
nel function and helps in smooth transformation of data to
feature space where the construction of regression function
takes place. The search space for the epsilon was set as 0.4
and 0.1 for upper and lower bound while setting outside this
range resulted into perpetual running of the code. The ker-
nel parameter ranges from 0.4 to 0.1 while the penalty factor
was maintained between 1000 and 1. The right choice of
hyperparameter range strengthens the exploitation and
exploration capacities of the model and leads to appreciable
time conservation.

Step 2. Chromosome fitness calculation: determination of
chromosome fitness involves the implementation of SVR
algorithm with training and testing set of data. Nonlinear

Table 1: Statistical analysis of the spinel ferrite nanomaterial dataset.

Maximum Average Minimum Standard deviation Correlation coefficient

Lattice parameter a (Ǻ) 8.7260 8.4360 8.2610 0.1134 -0.2658

Size of nanomaterial (nm) 51.7030 27.0510 6.7000 11.6199 -0.2667

Specific surface area (M2/g) 92.7000 37.1288 0.4000 21.5535 1
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mapping function was chosen among the pools of function,
while the chosen function combines with each of the chro-
mosome to access the encoded values of the kernel parame-
ter, penalty factor, and epsilon. The chromosome integrated
mapping function takes in the training set of data for sup-

port vector generation. The hyperplane parameter is set at
E-7, while each SVR algorithm trained with chromosome
integrated mapping function was evaluated and accessed
using root mean square error (RMSE) on the testing set of
data coupled with the saved support vectors during training.
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The chromosome with the lowest value of RMSE during
testing stage is most fit, while other chromosomes were
ranked in accordance to their fitness.

Step 3. Reproduction operation: reproduction involves selec-
tion of best chromosome with distinct qualities (usually
characterized with lowest RMSE value) for transition to the
next generation. In order to enhance fruitful and desired
transition, a tournament selection operation with probability
of 0.8 was implemented. Tournament selection involves ran-
dom selection of few chromosomes from the whole popula-
tion for tournament while the winners of the tournament
transit to crossover stage of operation.

Step 4. Crossover stage: in crossover stage, new offsprings
with desired qualities and potentials are formed from por-
tions and subsequences of two parents. The probability value
was set at 0.65 in order to achieve effective subsequences
transfer from parent to the offsprings.

Step 5. Mutation stage: Altering positions that are randomly
chosen within the chromosome is controlled through muta-
tion operation, and the probability value was set at 0.009 in
this present work.

Step 6. Stopping condition: the algorithm repeats the cycle
between Step 1 and Step 5 until the same value of fitness is
attained for consecutive sixty iterations.

4. Results and Discussion

The outcomes of the developed hybrid GBSVR model are
discussed in this section. The performance of the developed
GBSVR model is compared with that of STWR using differ-
ent evaluation parameters. The sensitivity and convergence
of the developed hybrid GBSVR model to the hyperpara-
meter and the content of the population matrix is presented
in this section. Comparison of the estimated specific surface
area of spinel ferrite nanomaterials with the measured values
for various dopants incorporation is also presented in this
section.

4.1. Sensitivity and Convergence of the Developed Hybrid
GBSVR Model. The convergence of the developed hybrid
GBSVR model at various iteration with different number
of chromosomes in population matrix is presented in
Figure 1.

The exploitation as well as exploration strength of the
developed hybrid model is optimized as convergence is
attained. It was observed from the convergence graph
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Table 2: Results of genetic optimization algorithm.

Model parameter Optimum value

Penalty factor 1000

Number of chromosomes 50

Epsilon 0.1

Hyperparameter lambda E-7

Kernel parameter 0.4

Kernel function Gaussian
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presented in Figure 1 that the developed model is robust and
shows the same point of convergence for different number of
chromosomes in the population matrix. The optimum pop-
ulation matrix was set at fifty from the obtained global solu-
tion convergence. The sensitivity of the developed GBSVR
model to the penalty hyperparameter factor is presented in
Figure 2 at various values of chromosomes in the population
matrix.

When ten numbers of chromosomes are navigating the
search space, the penalty factor initializes at a value of 750
and increases steadily over ten iterations before begins the
convergence. For fifty numbers of chromosomes, the chro-
mosomes initialize at a value higher than the initial value
of ten chromosomes, and similar convergence is attained.
The convergence presented in Figure 2 shows that the global
solution is well explored when there are many chromosomes

within the search space. The sensitivity of the developed
model with respect to the kernel parameter is presented in
Figure 3. Similar trend is attained, and the model converged
to global solution with 0.4 value of kernel parameter for
Gaussian mapping function. The results of genetic optimiza-
tion algorithm for each of the optimized hyperparameter are
presented in Table 2.
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Figure 4: Comparing the performance of the developed models during training and testing phases using different parameters for
performance evaluation.

Table 3: Performance of the developed model at stages of model
development.

GBSVR STWR
Training Testing Training Testing

CC 0.944 0.8452 0.41298 0.78174

RMSE 7.4631 12.5351 19.61918 16.21857

MAE 2.1146 11.0318 16.23133 13.05923
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4.2. Evaluation of the Performance of the Developed Models.
The performance of the developed GBSVR and STWR
models are compared during the training and testing phases
of model development using correlation coefficient (CC)
between measured and estimated specific surface area, mean
absolute error (MAE), and root mean square error (RMSE).
The outcomes of the comparison are presented in Figure 4.

The comparison on the basis of correlation coefficient on
training dataset presented in Figure 4(a) shows that the
developed hybrid GBSVR model displays enhanced perfor-
mance over the developed STWR-based model with perfor-
mance improvement of 56.25%, while the testing stage
presented in Figure 4(b) shows performance superiority of
7.508%. Using RMSE for comparing the performance as
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models.
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presented in Figures 4(c) and 4(d), the developed GBSVR
model outperforms STWR model with performance
improvement of 61.96% and 22.68% for training and testing
set of data, respectively. Similar trend of performance
improvement of 86.97% and 15.52% was, respectively,
obtained while comparing the developed GBSVR and STWR
models on the basis of mean absolute error (MAE) as pre-
sented in Figures 4(e) and 4(f). Table 3 contains the results

of the performance measuring metrics for training and test-
ing dataset.

Correlation cross-plots between the measured specific
surface area of doped spinel ferrite nanomaterials and the
predicted values are presented in Figure 5 for training
(Figure 5(a)) and testing (Figure 5(b)) set of data. The preci-
sion of the model can be judged from correlation cross-plots
through alignment of data points. The results of the
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Figure 6: Effect of lanthanum dopants on specific surface area of Ni0.15Cu0.25Co0.35Fe2-xLaxO4 spinel ferrite nanomaterial.
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developed GBSVR model are well aligned during training
and testing stages, while dispersion and deviations charac-
terize the outcomes of the developed STWR model. The
observed poor performance of the developed STWR model
can be attributed to the inability of STWR model to
adequately describe the nonlinear connections between the
lattice parameter of doped spinel ferrite nanomaterials, the
particle size, and specific surface area.

4.3. Influence of Lanthanum Incorporation on Specific
Surface Area of Ni0.15Cu0.25Co0.35Fe2xLaxO4 Spinel Ferrite
Nanomaterial Using the Developed Hybrid GBSVR Model.
Incorporation of lanthanum nanoparticles into the parent
crystal lattice of Ni0.15Cu0.25Co0.35Fe2xLaxO4 spinel ferrite
nanomaterial has been modeled using developed GBSVR,
and the comparison between the measured and estimated
specific surface area is presented in Figure 6. The effect of
grain boundary deposition of lanthanum is initially observed
from increase in specific surface area when the concentra-
tion of lanthanum nanoparticles is 0.06. Subsequently, after
this concentration, the lanthanum nanoparticles get diffused
into the parent crystal structure which leads to decrease in
the value of specific surface area [5]. Few particles of iron
(Fe3+) in tetrahedral sites were replaced with lanthanum
(La3+) particles in octahedral sites, while this charge diffu-
sion is responsible for the observed variation in specific sur-
face area. The predicted specific surface area using the
developed GBSVR model agree excellently well with the
measured values [5].

4.4. Tailoring Specific Surface Area of Cd1-xYxFe2O4 Spinel
Ferrite Nanomaterial through Yttrium Dopants Using the
Developed GBSVR Model. Figure 7 presents the effect of
yttrium nanoparticles incorporation on specific surface area

of doped Cd1-xYxFe2O4 spinel ferrite nanomaterial using the
developed GBSVR model. Comparison of the measured
specific surface area with the estimated values using the
developed GBSVR model as presented in Figure 7 shows
excellent agreement [52]. The observed variation of specific
surface area due to yttrium incorporation can be inferred
from the fact that substitution with higher ionic radius cre-
ates spaces in the configurations of spinel ferrite material.
Cationic radius characterizing the nanoparticles substituted
for yttrium surfers no alteration since the octahedral site of
iron remains unchanged.

4.5. Importance of Nickel Nanoparticles in Enhancing Specific
Surface Area of Doped Co1-xNixFe2O4 Spinel Ferrite
Nanomaterial Using the Developed Hybrid GBSVR Model.
Inclusion of nickel nanoparticles in the crystal structure of
Co1-xNixFe2O4 spinel ferrite nanomaterial further reveals
the significance of cation distribution on the physical prop-
erties of spinel ferrite nanomaterials especially the specific
surface area. As Fe3+ ions is distributed among the available
tetrahedral and octahedral sites, the incorporated nickel
(Ni2+) nanoparticle ions exist within tetrahedral sites while
cobalt (Co2+) ions reside in octahedral sites [8]. The compar-
ison presented in Figure 8 shows that the experimental trend
of nickel incorporation in lattice structure of Co1-xNixFe2O4
spinel ferrite nanomaterial is well captured by the developed
hybrid GBSVR model [8].

5. Conclusion

Specific surface area of doped spinel ferrite nanomaterials is
modeled in this work using stepwise regression (STWR)
algorithm and hybrid genetically based support vector
regression (GBSVR) algorithm. The descriptors to the
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Figure 8: Doping effect of nickel on specific surface area of Co1-xNixFe2O4 spinel ferrite nanomaterial.
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developed models include the lattice distortion due to dop-
ant inclusion in lattice structure of spinel ferrite nanomater-
ials and the size of nanomaterials. The models were
developed and validated using forty different spine ferrite
nanomaterials subjected to incorporation of different dop-
ants at various experimental conditions. The developed
GBSVR model outperforms STWR model when evaluated
using mean absolute error, correlation coefficient, and root
mean square error metrics. The developed GBSVR model
investigates the significance of lanthanum, yttrium, and
nickel nanoparticle inclusions in different matrixes of spinel
ferrite nanomaterials and the outcomes of the developed
model agree excellently well with the measured specific sur-
face areas. The outstanding performance demonstrated by
the developed model is of enormous significance in tailoring
the specific surface area of spinel ferrite nanomaterials to
desired values needed for specific application with resources
conservation and circumvention of experimental stress.

Data Availability

The raw data required to reproduce these findings are avail-
able in the cited references in Section 3.1 of the manuscript.
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