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A massive interest has arisen in nanocapsule, and it is used in different fields. Carbon nanotubes and fullerene are the most
commonly used nanomaterials due to their remarkable properties, such as optical, mechanical, electrical, and thermal
properties. Especially in biomedical science, nanocapsules are highly recommended to be applied as carriers for drugs. From
the Magic bullet theory, it is expected that the nanocapsules can deliver drugs to the target cells, which can reduce the side
effects on the nontargeted cells. In this research, we design a new nanocapsule consisting of a finite-length single-wall carbon
nanotube with two end caps which are hemispheres of C60 fullerene. By using elementary mechanics and mathematical
modelling, we can determine the exact formulae and their numerical solutions of nonbonded interactions between the
nanocapsules and the atoms Li, Na, K, Rb, Cs, Ca, Ni, Zn, and Pb which are assumed to be located in the middle of the
nanocapsules. Therefore, the optimal lengths of the carbon nanotubes for each case of atoms are determined. This research is a
guideline for studying the interaction between the drug and the nanocapsule in the drug delivery system.

1. Introduction and Literature Review

Carbon nanotubes are observed in 1952 by Radushkevich
and Lukyanovich using transmission electron microscopy
while observing some tubular structures of nanocarbon fila-
ments. However, the structures of carbon nanotubes are
practically studied by Iijima in 1991. This study leads to
the discovery of the single-wall carbon nanotubes in 1993
by Donald S. Bethune of IBM and Sumio Iijima at NEC lab-
oratories [1, 2]. The diameter of a single-wall carbon nano-
tube is around 0.4–2nm. In addition, there is another type
of carbon nanotubes which is the multiwall carbon nano-
tubes. These carbon nanotubes have cylindrical structures
containing at least two layers of graphene sheets [3].

The carbon atoms located on the surface of carbon
nanotubes can be arranged in several ways which are the
armchair, the zigzag, and the chiral structures [3]. One of
the most famous chemical molecules containing only carbon
atoms is the fullerene which is discovered in 1985 by Robert
F. Curl, Sir Harold W. Kroto, and Richard E. Smalley. It lets
them receive the Nobel Prize award in Chemistry in 1996,

and the first fullerene which is discovered is the C60 fullerene
or the so-called buckyball [1]. Indeed, the fullerenes have
closed hollow cages comprising of 12 pentagonal and 20
hexagonal faces. The C60 fullerene is a simple spherical mol-
ecule with an external diameter of about 0.71 nm. [3].

The discoveries of carbon nanotubes and fullerenes
have impacted various scientific and technological
knowledge due to their unique properties such as thermal
conductivities, electronic properties, and flexibilities.
Numerous studies are presenting the special properties of
carbon nanotubes such as the high thermal conductivity
which is predicted to be as high as 6,000W/mK at room
temperature (we note that the nearly pure diamond trans-
mits around 3,320W/mK), the high electrical conductivity
that estimates to 1 billion A/cm2 (we also note that the
copper wires burn out at 1 million A/cm2), and the high
flexibility properties [4].

In present, some drug delivery methods have limitations.
For instance, there is an insufficient concentration of the
drug in chemotherapy. Besides, these types of treatment
are incapable of treating specific target cells. Therefore, there
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is an opportunity to allow patients to suffer side effects from
the treatment. Due to the Magic bullet theory presented by
German biochemist Paul Ehrlich, who has received the
Nobel Prize in 1908, the drug delivery concept that can
deliver a drug to the target cell, many researchers are study-
ing their structures and their applications, especially the
applications in medical sciences such as their abilities to
transport drugs and chemical molecules. This method is effi-
cacious in attacking the diseases. It uses a smaller dosage of
the drug. Thus, there are fewer side effects than other
methods [5].

There are many studies using an elementary mechanics
and mathematical modelling to study some simulations of
nanocapsules. Cox et al. study the acceptance conditions
and suction energies of atoms and fullerenes in single-
walled carbon nanotubes. They also consider the oscilla-
tory motions of the encapsulated molecules inside the car-
bon nanotubes [6, 7]. Prangsai and Duangkamon design a
new type of nanocapsule using the combination between a
finite length of carbon nanotube and an infinite length
carbon nanotube which is called a two-section carbon
nanotube. They study the relationship between two radii
of nanotubes which affect to the stabilities of atoms and
molecules inside [8]. Sarapat et al. study the stable dispo-
sition of carbon nanotorus with the encapsulated fullerene.
They determine the most suitable major and minor radii
of the nanotorus that make the fullerene be the most sta-
ble along the central axis of the nanotorus [9]. Chan et al.
determine the minimum and maximum energy of carbon
nanotorus for atomic trapping, calculated by the energy
of interaction between atom and carbon nanotorus, where
all forms of atoms are charged and uncharged [10]. In
addition, the properties of C60 fullerene are taken into
account by Zeinalov and Koßmehl, and they find that
the cumene that oxidizes in the presence of fullerene has
an increase in value of O2 that is slower in the absence,
shown to be fullerene as an antioxidant for polymers
[11]. The solubility of fullerene in a solvent is a funda-
mental interest behaviour. Zeinalov and Koßmehl study
the solute-solvent interaction between a fullerene and 47
types of solvents with a wide range of densities to study
the solubilities of fullerene [11]. In this research, the
researchers design a new nanocapsule which is a combina-
tion between a finite length of carbon nanotube and a C60
fullerene where the fullerene is separated into two semi-
spheres and each semisphere is taken to be an end cap
of the nanotube. The design is shown in Figure 1.

In this study, the researchers consider the interactions of
various single atoms with our nanocapsules. The optimal
lengths of the finite-length carbon nanotubes that allow the
encapsulated atoms positioned at the center of the nanocap-
sule to be steady will then be determined.

2. Theoretical Background

The interaction energy between two nonbonded molecules is
dominated by the van der Waals interaction. Here, the 6-12
Lennard-Jones potential function is used to calculate the van

der Waals interaction,

V ρð Þ = −
A
ρ6

+ B
ρ12

, ð1Þ

where ρ is the distance between two typical atoms of the
nonbonded molecules. Here, A and B are the attractive and
the repulsive Lennard-Jones constants, respectively.

The interaction energy can be evaluated by using a dis-
crete atom-atom formulation, a continuum approximation,
or a hybrid discrete-continuum approximation. A discrete
atom-atom formulation is defined as a summation of the
interaction energy between each atom pair, namely,

E =〠
i

〠
j

V ρij

� �
, ð2Þ

where VðρijÞ is the potential function for atoms i and j
which are located at a distance ρij apart from two distinct
molecular structures. The researchers assume that each atom
on the two molecules has a well-defined coordinate position.
If the atoms are assumed to be uniformly distributed over
the entire surface of the molecule, then the double summa-
tion in equation (2) will be replaced by a double integral over
the surface of each molecule, and a continuum approxima-
tion can be applied as

E = η1η2

ð
S2

ð
S1

V ρð ÞdS1dS2 = η1η2 −AI3 + BI6ð Þ, ð3Þ

where ηi (i = 1 and 2) is the mean atomic surface densities of
the molecules Sj (j=1 and 2). The researchers let

In =
ð
S2

ð
S1

ρ−2ndS1dS2, ð4Þ

for n = 3 and 6. Alternatively, a hybrid discrete-continuum
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y

Figure 1: The designed nanocapsule combined with a finite length
carbon nanotube in the middle and two hemispheres of a fullerene.
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approximation can also be used to determine the interaction
energy as follows

E =〠
i

η
ð
S
V ρið Þ dS, ð5Þ

where η is the surface density of atoms on the symmetrical
molecule, ρi is the distance between the typical surface ele-
ment dS on the symmetrical molecule, and atom i of another
molecule which is modelled as discrete.

In this research, the researchers also express the exact for-
mula of the interaction energy in terms of a generalized hyper-
geometric function of scalar argument which is defined as

pFq a1,⋯, ap ; b1,⋯, bp ; z
� �

= 〠
∞

k=0

a1ð Þk ⋯ ap
� �

k

b1ð Þk ⋯ bq
� �

k

· z
k

k!
, ð6Þ

where ðaÞn is a Pochhammer symbol and ai, i = 1,⋯, p ; bj, j
= 1,⋯, q are complex numbers with suitable restrictions,
and z is a complex variable. We note that a Gauss hypergeo-
metric function is defined by

2F1 a, b ; c ; zð Þ = 〠
∞

k=0

að Þk bð Þk
cð Þk

· z
k

k!
: ð7Þ

It is noted that the series is absolutely convergent for jzj
< 1. A Pochhammer symbol is defined as

að Þn = a a + 1ð Þ a + 2ð Þ⋯ a + n − 1ð Þ ; n ≥ 0: ð8Þ

That is, if a is an integer, the formula can be written as

að Þn =
a + n − 1ð Þ!
a − 1ð Þ! : ð9Þ

Moreover, it can be seen that 1F0ða ; zÞ =∑∞
k=0ðaÞk · zk/k!

= ð1 − zÞ−a.
However, the Pochhammer symbol can also be used

when a is not an integer or a is a complex number as,

að Þp =
Γ a + pð Þ
Γ að Þ , ð10Þ

where ΓðzÞ is a gamma function which is a fundamental build-
ing block of many special functions [12]. For ℝðzÞ > 0, the
gamma function ΓðzÞ can be defined as the definite integral

Γ zð Þ =
ð∞
0
tz−1e−tdt: ð11Þ

The researchers also note that Γðz + 1Þ = zΓðzÞ. In addi-
tion, when z = n is a positive integer, we can express the
gamma function in terms of factorial which is Γðn + 1Þ =
n!. Moreover, there is a famous relation called the Euler’s
reflection: Γð1 − zÞΓðzÞ = π/sin ðπzÞ. The formula is defined
for any value of a complex number z except for z = 0, −1,
−2,−3,⋯

3. Interaction between Atom and Finite-Length
Carbon Nanotube with End Caps

In this research, the researchers consider the interaction
between a single atom and the proposed designed nanocap-
sule, a finite-length carbon nanotube with end caps which is
a symmetrical structure. Thus, the hybrid discrete-
continuum approximation shown in equation (5) can be
used to evaluate the interaction energy as

E = η
ð
S
V ρð ÞdS = η

ð
S

−
A
ρ6

+ B
ρ12

� �
dS = η −AI3 + BI6ð Þ,

ð12Þ

where In =
Ð
Sρ

−2ndS and n = 3, 6. It is compulsory to calcu-
late two parts of interaction energies to get the total interac-
tion energy that means the total interaction energy between
a single atom and a finite-length carbon nanotube with end
caps can be expressed as

Etot = Etube + 2Ecap: ð13Þ

First, the researchers consider the interaction between a

single atom and a finite-length carbon nanotube Etube =
ηtubeð−AIðtubeÞ3 + BIðtubeÞ6 Þ where ηtube is the surface density
of carbon atoms on the nanotube. In Figure 2, there is the
relation ρ2 = r2 + z2, where ρ is the distance between a typi-
cal surface element of the carbon nanotube and the center of
the nanotube, z is the z-coordinate of the typical surface ele-
ment of the carbon nanotube, and r is the radius of the
nanotube. The cylindrical coordinates system is used to cal-
culate the following integration,

I tubeð Þ
n =

ð
S
ρ−2ndS = 2π

ðza
−za

r
z2 + r2ð Þn dz: ð14Þ

Since the integrand is an even function, there is

I tubeð Þ
n = 4π

ðza
0

r
z2 + r2ð Þn dz = 4πr−2n+1

ðza
0

1
z/rð Þ2 + 1

� 	n dz:
ð15Þ

Let u = z/r be given. Then

I tubeð Þ
n = 4πr−2n+2

ðza
r

0
1 − −u2

� �� 	−n
du: ð16Þ

Consider
Ð za/r
0 ½1 − ð−u2Þ�−ndu, the result is

ðza
r

0
1 − −u2

� �� 	−n
du =

ðza
r

0
〠
∞

k=0
nð Þk

−u2
� �k

k!
du = 〠

∞

k=0

nð Þk
k!

ðza
r

0
−u2
� �k

du:

ð17Þ

It is noted that ∑∞
k=0ðaÞkzk/k! = ð1 − zÞ−a, that is,

½1 − ð−u2Þ�−n =∑∞
k=0ðnÞkð−u2Þk/k!: Since

Ð b
að−u2Þ

kdu =
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ð−1ÞkÐ bau2kdu = ð−1Þku2k+1/2k + 1jba = uð−u2Þk/2k + 1jba when
a and b are any constants, the result is

ðza
r

0
1 − −u2

� �� 	−n
du = u〠

∞

k=0

nð Þk
k!

· −u2
� �k
2k + 1ð Þ

" #





za/r

0

: ð18Þ

In addition,
1/2k + 1 = ðk − 1/2Þ!/2 ðk + 1/2Þðk − 1/2Þ! = ðk + 1/2 − 1Þ!

/2ðk + 3/2 − 1Þ! = Γð1/2 + kÞ/Γð3/2 + kÞð1/ ffiffiffi
π

p Þð ffiffiffi
π

p /2Þ: It is
also noted that Γð1 − zÞΓðzÞ = π/sin ðπzÞ and Γðz + 1Þ = zΓ
ðzÞ. Since ðaÞp = Γða + pÞ/ΓðaÞ, it can be expressed as

1
2k + 1 = Γ 1/2 + kð Þ

Γ 1/2ð Þ · Γ 3/2ð Þ
Γ 3/2 + kð Þ = 1/2ð Þk

3/2ð Þk
: ð19Þ

Hence,

ðza
r

0
1 − −u2

� �� 	−n
du = u〠

∞

k=0

1/2ð Þk nð Þk
3/2ð Þk

· −u2
� �k

k!

" #





za/r

0

: ð20Þ

From the fact that 2F1ða, b ; c ; zÞ =∑∞
k=0ðaÞkðbÞk/ðcÞk ·

zk/k!, the result is

u〠
∞

k=0

1/2ð Þk nð Þk
3/2ð Þk

· −u2
� �k

k!
= u2F1

1
2 , n ;

3
2 ;−u

2
� �

: ð21Þ

Therefore,

ðza
r

0
1 − −u2

� �� 	−n
du = za

r
·2F1

1
2 , n ;

3
2 ;−

z2a
r2

� �
: ð22Þ

Now IðtubeÞn can be written in terms of

I tubeð Þ
n = 4πr−2n+1za·2F1

1
2 , n ;

3
2 ;−

z2a
r2

� �
: ð23Þ

Therefore, the total interaction energy between a single
atom and a finite-length carbon nanotube will be

Etube = ηtube −AI tubeð Þ
3 + BI tubeð Þ

6

� �
: ð24Þ

z

y

za

–za

r

O

𝜌

x

𝜃

Figure 2: A finite-length carbon nanotube in the middle of our
nanocapsule.
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Figure 3: One hemisphere of fullerene acted as an end cap of our
nanocapsule.

Table 1: Lennard-Jones constants.

Atom ε (kcal/mol) σ (Å)

Li 0.025 2.451

Na 0.030 2.983

K 0.035 3.812

Rb 0.040 4.114

Cs 0.045 4.517

Ca 0.238 3.399

Ni 0.015 2.834

Zn 0.124 2.763

Pb 0.663 4.297

Table 2: Numerical values of Lennard-Jones constants used in the
model.

Interaction A kcal/mol × A∘6� �
B kcal/mol × A∘12� �

Li − C 100.296 4:908 × 104

Na − C 178.671 1:422 × 105

K − C 383.594 6:068 × 105

Rb − C 517.118 1:032 × 106

Cs − C 737.532 1:978 × 106

Ca − C 717.400 8:139 × 105

Ni − C 110.688 7:718 × 104

Zn − C 298.497 1:952 × 105

Pb − C 2412.724 5:516 × 106
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Next, the researchers will determine the interaction
energy between a single atom and a half hollow sphere
which is shown in Figure 3. Now the researchers construct
the xa and ya-axes which is parallel to the x and y-axes,
respectively. Then, the researchers use the spherical coordi-
nates system in the integration. Let θ be an azimuthal angle
measured from the positive xa-axis, and ϕ is a polar angle
measured from the positive z-axis to the radius vector of
the half hollow sphere. In this case, there is ~ρ2 = r2 + z2a − 2
rza cos ðπ − ϕÞ = r2 + z2a + 2rza cos ðϕÞ, where 0 ≤ ϕ ≤ π/2.
From equation (12), it can be written as

Ecap = ηcap −AI capð Þ
3 + BI capð Þ

6

� �
, ð25Þ

where ηcap is the surface density of carbon atoms on the half

hollow spherical surface, and IðcapÞn can be evaluated as follows,

I capð Þ
n = 2π

ðπ
2

0

r2 sin ϕð Þ
r2 + z2a + 2rza cos ϕð Þ½ �n dϕ: ð26Þ

Let u = r2 + z2a + 2rza cos ðϕÞ. We get

I capð Þ
n = 2π

ðz2a+r2
za+rð Þ2

r2 sin ϕð Þ
un

· 1
−2rza sin ϕð Þ du

= πr
za 1 − nð Þ r + zað Þ2−2n − r2 + z2a

� �1−nh i
:

ð27Þ

In the case of another half hollow sphere, it is noted that
the distance between a single atom at the origin and a typical
atom of the half hollow sphere is given by ~ρ2 = r2 + z2a − 2rza
cos ðϕÞ, where π/2 ≤ ϕ ≤ π. However, the calculation of
IðcapÞn is the same as the calculation which it had been done
before. Here is the calculation of IðcapÞn for another half hollow
sphere,

I capð Þ
n = 2π

ðπ
π
2

r2 sin ϕð Þ
r2 + z2a − 2rza cos ϕð Þ½ �n dϕ: ð28Þ

Now we let u = r2 + z2a − 2rza cos ðϕÞ. Then

I capð Þ
n = πr

za

ð za+rð Þ2

z2a+r2
u−ndu = πr

za 1 − nð Þ r + zað Þ2−2n − r2 + z2a
� �1−nh i

:

ð29Þ

Hence, the total interaction energy between a single atom
and the nanocapsule which is a finite-length carbon nanotube
with end caps can be determined in equation (13) using the
formulae Etube and Ecap in equations (24) and (25),
respectively.

4. Numerical Results

In this section, the researchers use the exact formula of the
total interaction energy between a single atom and our
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Figure 4: The total interaction energies of Li, Na, K, Rb, Cs, Ca, Ni, Zn, and Pb.
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nanocapsule which is a finite-length carbon nanotube with
end caps to determine its numerical solutions. The solutions
are used to understand the encapsulations behaviours of var-
ious atoms which are Li, Na, K, Rb, Cs, Ca, Ni, Zn, and Pb in
the nanocapsule. In this section, the researchers will deter-
mine the encapsulation conditions for each atom and the
optimal lengths of the finite-length carbon nanotubes which

are placed at the middle of the nanocapsules. It is noted that
an atom is stable inside a nanocapsule when its interaction
energy is the least and less than zero. Moreover, each atom
is assumed to be at the center of the nanocapsule.

First, the researchers have to determine the numerical
solutions by using the Lennard-Jones constants in Table 1
[13]. The attractive and repulsive constants are calculated

–2

0
1 2 3 4 5 6 7
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Na
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Figure 5: The total interaction energies of Li, Na, Ni, and Zn.
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Figure 6: The total interaction energies of K and Ca.
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and shown in Table 2. The researchers note that the attractive
and repulsive constants are calculated from the Lorentz-
Berthelot mixing rules (empirical combining rules) A = 2εij
σ6ij and B = εijσ

12
ij where εij =

ffiffiffiffiffiffiffiεiεj
p and σij = σi + σj/2. Here,

εi is the well depth in kcal/mol and σi is the van derWaals dis-
tance in Å [13, 14]. In addition, the mean surface densities of
the atoms of carbon nanotube ηtube and hemisphere of fuller-
ene ηcap are used. The mean surface densities of the atoms are
calculated from the ratio between the number of atoms on
their surfaces and their surface area which are ηtube = 0:3812
Å–2 and ηcap = 0:3789Å–2 [6]. It is remarked here that the
radius of a C60 fullerene is around 3.548Å [15].

Since each atom is placed at the center of the nano-
tubes, and the length of the carbon nanotube 2za is varied,
the total interaction energies can be plotted versus the
values of za in Figure 4. According to their encapsulation
behaviours, the atoms can be classified into 3 groups.
The first group consists of Li, Na, Ni, and Zn. In this case,
the total interaction energies between each atom and the
nanotube are negative for any value of za ≥ 0. That is,
the atoms can be encapsulated in the nanotube. The
behaviours of Li, Na, Ni, and Zn are depicted in
Figure 5. In this case, the minimum energies occur at za
= 0. Hence, it can be concluded that the atoms Li, Na,
Ni, and Zn prefer to be inside the sphere. The second
group consists of the atoms K and Ca. In this group, each
atom is also encapsulated in the nanocapsule for any value
of za ≥ 0 but the minimum interaction energies occur at
some positive values of za. That is, the atoms K and Ca
prefer to be inside the nanocapsules having finite-length
carbon nanotubes ð2za > 0Þ when each atom is placed at

the middle. The optimal lengths of the carbon nanotubes
for K and Ca are 1.490Å and 0.718Å, respectively. The
behaviours of K and Ca are depicted in Figure 6. The last
group consists of the atoms Rb, Cs, and Pb. The atoms in
this group are not able to be inside the spheres. They can
only be encapsulated in the nanocapsules having the
finite-length carbon nanotubes at the middle ð2za > 0Þ.
The minimum lengths of the carbon nanotubes in which
allow the atoms Rb, Cs, and Pb to be encapsulated are
1:658 × 10−5Å, 0.970Å, and 0.362Å, respectively. How-
ever, the optimal lengths of the carbon nanotubes for
Rb, Cs, and Pb are 2.068Å, 2.830Å, and 2.416Å, respec-
tively. The behaviours of Rb, Cs, and Pb are depicted in
Figure 7.

10

1 2 3 4 5 6 7
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za(Å)

Etot (kcal/mol)
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Figure 7: The total interaction energies of Rb, Cs, and Pb.

Table 3: Groups of atoms and desirable lengths of nanotubes when
the atoms are placed at the center of the nanocapsules.

Atom
Optimal length of carbon nanotube-2za

(Å)
Group za : r

Li 0 1 0 : 1

Na 0 1 0 : 1

K 1.490 2 0.210 : 1

Rb 2.068 3 0.291 : 1

Cs 2.830 3 0.399 : 1

Ca 0.718 2 0.101 : 1

Ni 0 1 0 : 1

Zn 0 1 0 : 1

Pb 2.416 3 0.340 : 1
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5. Conclusion

A nanocapsule is described in this study as a finite-length
carbon nanotube with two hemispheres acting as end caps.
The exact formula of the interaction energy between the
nanocapsule and a single atom is determined using a Len-
nard Jones potential function. The total interaction energy
is made up of two energies of interaction: the energy of inter-
action with a single atom and the energy of interaction with
the two hemispheres of C60 fullerene. In a subsequent study,
the total interaction can be used to evaluate the numerical
solutions based on the parameter values in Tables 1 and 2.
This study indicates that the behaviours of atoms can be cat-
egorized into three types. The first group (group 1) is made
up of the atoms Li, Na, Ni, and Zn. The atoms prefer to be
inside the fullerene (za = 0) rather than to be inside the
finite-length carbon nanotube with end caps when za > 0.

However, the atoms in the first group can be encapsulated
in the nanocapsule when za ≥ 0. The total interaction ener-
gies of the atoms in the first group are depicted in
Figure 5. The second group (group 2) is consisting of the
atoms K and Ca. The atoms prefer to be inside the finite-
length carbon nanotube with end caps when za > 0 rather
than to be inside the fullerene (za = 0). However, the atoms
in the second group can be encapsulated in the fullerene
(za = 0). The total interaction energies of the atoms in the
second group are depicted in Figure 6. The last group (group
3) is consisting of Rb, Cs, and Pb. On the other hand, the
atoms in this group cannot be encapsulated in the fullerene
(za = 0), and they can be encapsulated in the finite-length
carbon nanotube with end caps when za > 0. The total inter-
action energies of the atoms in the third group are depicted
in Figure 7. Furthermore, we obtain the optimal lengths of
the carbon nanotubes for each atom, as seen in Table 3.
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Figure 8: Nanocapsules with their optimal ratios za : r.
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The values in this table represent the best carbon nanotube
lengths for keeping atoms steady while they are in the mid-
dle of the nanocapsules. Finally, Figure 8 is depicted using
the ratio za : r in Table 3, with the atoms in the middle of
the nanocapsules. The findings can be used as a guideline
for the manufacture of containers for nanomedicines.

Data Availability

The values of parameters supporting our model are from
previously reported studies and datasets, which have been
cited.
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