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One of the most former and widely utilized unconventional machining is known as the process of electric discharge machining
(EDM). This is a procedure, where a serialized set of electric discharges are applied to eliminate the material from a workpiece
(i.e., electrically conductive). This article proposes a bi-objective optimization of process arguments in machining of stainless
steel of 630 (SS630) grade using both experimentation and thermal investigation. Here, flushing pressure (PF), pulse on-time
(TON), peak current (Ip), and pulse off-time (TOFF) are assumed as the input process parameters to conduct a series of
experiments on die-sinking EDM (DS-EDM) of SS630 to predict the output characteristics of machining optimization using
grey relation analysis (GRA). Both material removal rate (MRR) and surface roughness (SR) are used for evaluating the output
response obtained using the machining performance. In addition, thermal investigation is performed using finite element
method (FEM) analysis to compute theoretical MRR (T-MRR) for the distribution of temperature on workpiece. Further, GRA
is employed to obtain the optimal process parameter combination for best output responses. From the confirmation test
results, the optimal combination obtained using GRA approach is at Ip = 6A, TON = 35 μs, TOFF = 90μs, and PF = 4MPa.

1. Introduction

Manufacturing is experiencing many changes because of the
frequent demands of the customers for qualitative, reliable,
and superior components and merchandises in the most
advanced and technological climate. To meet these demands,
manufacturers around the globe are working toward cheaper
cost solutions to maintain their competitiveness on machined
parts and manufactured goods. It is not feasible to procure
device products for cutting materials like stainless steel, Nimo-
nics, titanium, satellites, and ceramics. Generation of intricate
shapes on such materials is also difficult by traditional tech-
niques. Advanced machining methods have come into exis-
tence to match such needs. Such advanced machining
methods have unique qualities compared to conventional

machining methods. EDM is one of such advanced machining
methods, to generate parts with excellence, finesse, and dimen-
sional accuracy [1]. The advanced machining methods are
essential as several workpiece materials are actively employed
in the automotive enterprises, aerospace part, medical appli-
ances, and molding, and die manufacturing industries. A regu-
lated erosion by a sequence of electric sparks necessitates
removing the material in EDM, and the two conductors are
immersed in a dielectric medium [2]. For electrical discharge
sparking, both conductors are separated by the distance, known
as a spark gap. The spark gap is maintained with the help of the
servo controller [3]. The transmitted electrons strike with
dielectric particles existing in the spark gap so that the plasma
channel formed. The plasma channel permits the current to
cross the conductors to produce sparks. A significant quantity
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of heat produced due to which a few portions of conductors
melted and dissipated. After this, the material is melted and
vaporized. During the process, several sparks are created, and
the workpiece material gets the shape of the electrode. The
flushing process can remove the melted material in the air gap
[4]. Figure 1 displays the principal schematic picture of the
EDM process.

In [5], the authors executed a full scale electrothermal visu-
alization of variable effect on the attributes of solitary spark cor-
rosion used in the procedure of EDM. Additionally, they have
also performed theoretical analysis in differentiation with
experiment validation. Jithin et al. [6] assumed the equations
of Gaussian heat flux and thermal conductivity as temperature
relaying properties for finding the experimental radius of car-
ter, which are then compared with predicted carter radius. In
[7], the authors performed an improvement on modelling of
EDMwith the adjoining process of the deformed characteristic
of geometry and the thermal study of heat transfer. Due to the
proportionality of deformation rate computation with the
spark corrosion, the outcome is more accurate and naturalistic
result and further validated the simulated outputs by managing
examination on AISI OI work steels with the change in the pro-
cedure variable of machine such asTONandIp. In [8], ANSYS
FEM coding is used to calculate the propagation of tempera-
ture, and then prediction of volume discarded on account of
solitary spark is reckoned from the temperature profiles. Fur-
ther, T-MRR values are compared with the values of E-MRR.
The recent investigation [9] of machining on H13 die steel
assumed process variables such as substances of cathodes,
anodes, TON, and Ip for conducting a series of experiments,
and the machining process is evaluated using output responses
like TWR, MRR, and SR. In addition, Taguchi approach is
employed as an optimization of EDM parameters. In [10],
MRR is verified on DS-EDM of structural machining of
SKD11 die steel with process variables like TON, Ip, and gap
voltage (VG). Further, the effects of these process parameters
also analyzed using response surface methodology (RSM). In
[11], the influence of different input process arguments in
DS-EDM is experimented and examined with the usage of cou-
ple of electrodes such as copper and graphite with both polar-
ities (i.e., positive, and negative) to obtain maximum response
of MRR and minimum of SR.

Chekuri et al. [12] studied the DS-EDM on supper alloy
made of Nimonic C-263 with graphite electrode using Taguchi
L25 orthogonal array by considering input process parameters
such as Ip, TON, TOFF, and PF to obtain the output response
characteristics like MRR, TWR, and SR, respectively. Rajama-
nickam and Prasanna [13] examined the EDM for drilling of
small hole on Inconel 718 workpiece with brass electrode
(diameter of 300μm). The authors employed RSM and TOPSIS
approaches for describing the significant input process parame-
ters that influence the output response characteristics likeMRR,
EWR, ovrcut, taper angle and circularity etc. In [14, 15], the
authors introduced optimization techniques based on evolu-
tionary algorithms to obtain optimal process parameter combi-
nation to reduce the machining time and improving the
machining efficiency with enhanced performance. In [16], the
concept of artificial intelligence called artificial neural networks

is employed to predict the output response parameters such as
MRR, SR, and TWR after machining the Nimonic C-263 using
DS-EDM process.

Kavimani and Soorya [17] proposed T-GRA-PCA to assess
the effect of process variables over the measured machining
performance of WEDM performed on magnesium based
MMCs. Chaudhari et al. [18] implemented a unique and inte-
grated design for optimizing the control variables such as dis-
charge current, TON, and TOFF in wire cut EDM process
using an approach of GRA. The authors found an optimal
combination of input control variables at 6μsec, 4μsec, and
6A of TON, TOFF, and discharge current, respectively. Further,
the validation has proven the closest association of optimal out-
come as compared to the experimental response. In [19], the
authors performed an experimental evaluation with optimiza-
tion of input control variables in DS-EDM of AISI D2 steel,
where the optimal combination is obtained using integrated
RSM with GRA technique. The obtained optimal combination
of process variables such as discharge current, gap of spark,
dielectric liquid, and electrode polarity are 15A, 6mm, kero-
sene oil, and positive polarity, respectively. The confirmation
test results have been verified and validated the enhancement
in machining process. Mitra et al. [20] performed an indura-
tion process by creating a highly nonlinear model with
twenty-two dimensional principles and implemented an archi-
tecture of neural network with multilayer perceptron for solv-
ing an optimization issue with multiple objectives. In [21],
the authors experimented and validated the impact of various
control variables such as VG, TON, and Ip on DS-EDM of SS
with grade AISI420 material. They have measured MRR and
electrode wear rate as output response attributed for perfor-
mance validation. Additionally, the integrated Taguchi with
GRA is applied to find the best possible combination for opti-
mal machining on DS-EDM. Jampana and Ramana Rao [22]
investigated an experimental analysis of DS-EDM on SS630
grade with machining control variable optimization using a
design approach of Taguchi for an output response attributes
such asMRR, and SR. However, themachining parameter opti-
mization is still a challenging job for improving the productiv-
ity and reducing the labor time which influences the overall
production cost in the applications of manufacturing filed. In
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Figure 1: Schematic of EDM process.
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substance, the main problems arisen in DS-EDM process are
due to the generation of heat. Therefore, addressing the tem-
perature alterations in workpiece material is essential to
enhance the performance before starting the machining pro-
cess, which can be achieved using thermal investigation tech-
niques like FEM analysis [23, 24]. Recently, Chekuri et al.
[25] studied the experimental and numerical investigation of
DS-EDM on Nimonic C-263 as workpiece material with an
electrode tool of copper-tungsten. In addition, hybrid optimi-
zation approach called the cuckoo search-based whale optimi-
zation algorithm is implemented for obtaining the optimal
combination of machining control variables for increased per-
formance. However, none of the works addressed in the litera-
ture have not examined FEM analysis of DS-EDM on SS630
grade. In addition, it is quite sturdy to domachining of a work-
piece made of SS630 grade material because of its properties
such as lesser thermal conductivity, higher erosive resistance,
and higher built-up edge tendency. Further, this product has

a variety of applications in industries such as pharmaceutical,
pumping production, and other device paradigms.

Hence, this article addresses a thermal and experimental
evaluation of DS-EDM on a workpiece made of using SS630
grade material with an electrode tool of copper-tungsten.
Initially, the temperature distribution profiles are observed
using the FEM analysis, and T-MRR is computed using an
isotherm of temperature. Additionally, GRA technique is
employed as a solution for solving the optimization problem,
which predicts the optimal combination of machining con-
trol variables.

2. Prerequisite for FEM Analysis

This paragraph states the various inspection of DS-EDM
procedure utilizing the scanning of the FEM, which is pre-
ferred for replicating single spark with the EDM by obtain-
ing numerous properties such as variable spark radius,
cathode energy fraction, and evenly distributing the equa-
tion for Gaussian heat flux. The following are the consider-
ations for numerical analysis:

(i) Workpiece substance is homogeneous and isotropic

(ii) Vitality fragment is depending on TON

(iii) 297K: required temperature

(iv) Modeling for solitary spark

(v) 100%: effective flushing

The equation properties of Fourier heat condition are
employed to derive the governing equation that operates
FEM.
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Figure 2: 2D symmetric axis sharing its partition with DS-EDM process.

Table 1: Workpiece material compositions with corresponding
weight.

Name of component % of weight

Silicon (Si) 0:40 max

Nickel (Ni) 10.00-14.00

Manganese (Mn) 0.60-1.00 max

Carbon (C) 0.036-0.44 max

Chromium (Cr) 16.00-18.00

Sulphur (S) 0.030 max

Nitrogen (N) 0.10 max

Phosphorus (P) 0.05 max

Molybdenum (Mo) 2.00-3.00

Iron (Fe) Balance

Table 2: Fundamental attributes of composition of electrode
material.

Name of
composition

Density
(g/cm3≥)

Hardness
(Kgf/mm2)

Resistivity
(μΩcm)

W50/Cu50 11.849 114.99 3.199

Table 3: Input control variables with their corresponding levels.

Parameter
No. of levels

Level 1 Level 2 Level 3 Level 4

Ip (A) 6 10 14 18

TON (μs) 15 25 35 45

TOFF (μs) 20 50 70 90

PF (Mpa) 2 4 6 8
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2.1. Governing Equation. The differential equations stated
below are employed to manage the conduction of thermal
generated heat in axisymmetric model:

ρCp
∂T
∂t

=
1
r
∂
∂r

Ktr
∂T
∂r

� �
+

∂
∂z

Kt
∂T
∂z

� �
: ð1Þ

Cp is denoted as specific heat, ρ is workpiece, T is tem-
perature, and Kt is thermal conductivity. The r and z are
denoted by cylindrical workpiece.

2.2. Boundary Conditions. Figure 2 represents the 2D axisym-
metric model which is introduced with frontier conditions
that is on the north side of XY surface. The properties of

Table 4: Working circumstances for setting up the experimentation.

Name Description

Workpiece material SS630 grade 70 × 40 × 8mmð Þ
Electrode material Copper-tungsten (21.5mm length with a diameter of 12.5mm)

Dielectric oil Commercial EDM oil grade SAE 450

Sign of polarity Normal

Supply voltage 110 V

Gap voltage 70 V

Time of machining 5 mins

A: Thermal–Electric
Temperature
Type: Temperature
Unit: K
Time: 1
3/11/2022 12:12 PM

800 Max
743.91
687.81
631.72
575.63
519.53
463.44
407.34
351.25
295.16 Min

0.00 25.00
12.50 37.50

50.00 (mm)

X
Z

Y

ANSYS
R14.5

Figure 3: Distribution of temperature distribution attained for 18A of current intensity and 45 μsec of pulse duration.

A: Thermal–Electric
Total heat flux
Type: Total heat flux
Unit: W (mm2)
Time: 1
3/11/2022 12:10 PM

11.377 Max
10.113
8.8486
7.5845
6.3204
5.0563
3.7922
2.5282
1.2641
1.9207e-7 Min

ANSYS
R14.5

0.00 25.00
12.50 37.50

50.00 (mm)

X
Z

Y

Figure 4: Amount of material removed for 18A of current intensity and 45μsec of pulse duration.
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nature Gaussian distribution are utilized by spark radius
aimed overall with the ignition on heat flux time. Heat transfer
beyond the spark radius is the convective generation of cooling
effect of dielectric. Here, the value of heat flux is considered as
negligible almost zero. XW is denoted as axisymmetric bound-
ary, and WZ and YZ are two other boundaries, which are far
from the radius of spark, severally.

2.3. Heat Input. In general, DS-EDM has some significant fac-
tors such as workpiece heat input and the measure of thermo-
physical properties, where the preference of these parameters
impacts the estimation of MRR values. The approximation
of generated heat from plasma of transitory model is done
using Gaussian heat distribution as formulated below:

qw rð Þ = 4:45PVGIp
πR2

s

exp −4:5
r
Rs

� �2
( )

, ð2Þ

where VG is denoted as the gap voltage, Rs is represented
as spark radius, Ip is denoted as peak current, P is denoted
as amount of temperature gained by the workpiece, and qw
is represented as the temperature quantity in the workpiece
through the sparking operation.

2.4. Spark Radius. In real-time cases, it is a tough task to cal-
culate short pulse duration with the spark radius. Thus, for
calculation of this spark radius constructively, numerous
methods had been listed in the literature. In those, Erden23
has shown that the discharge power and time are directly
proportional to spark radius, which is expressed as follows:

Rs = ZPmTn
on, ð3Þ

where m, n, and Z are represented as empirical con-
stants; Ton denotes pulse on-time; and P and Rs represent
the power and spark radius, respectively.

2.5. Solution Methodology for Thermal Analysis. With the
implementation of FEM, control equation specified in Equation
(1) can be resolved by acquiring the ANSYS 15.0 visualization
domain. The size of the workpiece for thermal analysis is

B: Static structural
Structural error
Type: Structural error
Unit: mJ
Time: 1
3/11/2022 12:10 PM

0.50308 Max
0.44718
0.39128
0.33539
0.27949
0.22359
0.16769
0.1118
0.055898
4.2804e-11 Min

0.00 25.00
12.50 37.50

50.00 (mm)

ANSYS
R14.5

XZ

Y

Figure 5: Structural error.

Figure 6: Machining procedure of DS-EDM.

Figure 7: Illustration of SS630 grade workpiece after machining.
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assumed as 15 × 10 × 3 mm, where element size is assumed as
1μm and then the model mesh and dimensions are created.
FEM is an application to gain the organizing of the heat quo-
tient on the workpiece, and the values of MRR are calculated
from the workpiece as shown below:

MRR =
Cv × 60

TON + TOFF secð Þ , ð4Þ

where Cv is denoted crater volume and TON and TOFF are
represented as pulse on-time and pulse off-time.

3. Materials and Methods

Here, SS630 grade material is selected as a workpiece due to
low risk of distortion at reduced temperatures. It has 8mm
thickness and 70 × 40mm rectangular dimensions. Addition-
ally, it is a best choice for an experimentation on DS-EDM
when there is a necessity of erosion and higher strength. The
electrode material used in this work is a copper-tungsten mix-
ture since they are not mutually solvable.

The electrode length is about 21.5mm and 12.5mm diam-
eter. The chemical composition of workpiece material and the
properties of electrode material are listed in Tables 1 and 2,
respectively.

4. Experimental Setup

This section contains numerous process variables with all ideal
levels and experimental setup. All the experimental trials are
performed using FORMATICS 50 on an apparatus of DS-
EDM model, which is embedded with ELECTONICA PRS
20 to analyze the effects of various elements of process vari-
ables such as TOFF, TON, PF, and Ip on the SR of machine
drilled hole. In addition, MRR also computed during the
process of DS-EDM of SS 630 grade with copper-tungsten
electrode. Before starting themachining process of DS-EDM ,
the experimentation tools like electrode, and workpiece are
well polished and cleaned. The control variables of input to
the DS-EDM are listed in Table 3 with their number of levels,
while the working conditions and their explanation for setting
up the experimentation is listed in Table 4, respectively. Addi-
tionally, the SR is measured on machined surfaces with the
direction of transverse on machine surface of cutoff length as
0.8mm using Talysurf SR tester. The final values of SR are
measured using the iterative mechanism, where it was tested
thrice and considered the averaged value as final SR.

4.1. Thermal Investigation Using FEM. In practice, the com-
mercial FE code is integrated in DS-EDM process to esti-
mate the distribution of temperature and the deformation
of molten material using the plasma pressure. On the other
hand, FE code is employed by ANSYS for verifying the solu-
tions for real-time problems. The complicated interlinkage
of numerous material phenomenon is intricated in DS-
EDM which is again a complex thermal process. Therefore,
FEM analysis is applied to simulate the distribution of tem-
perature and stress analysis into the workpiece; here, an
advanced software, i.e., ANSYS, is utilized for upgrading
the DS-EDM model with FEM analysis for all complex
parameters processing. This can be utilized with various
models and determine any complex geometry which consists
various capacities of FEM varying from thermal system, and
fluid mechanics, simple linear structure to static analysis of
nonlinear complex structures, structural mechanics, varying
dynamic survey, and electromagnetics.

This work considered ANSYS 14.5 workbench for simu-
lating the results on modelling of DS-EDM with SS630 grade

Table 5: Obtained experimental values of MRR, and SR for the
input process variables.

Experiment
no.

Ip
(A)

TON
(μs)

PF
(MPa)

TOFF
(μs)

E-MRR
(mm3/min)

SR
(μm)

1 6 15 2 20 1.372 3.29

2 10 15 4 50 5.015 3.92

3 14 15 6 70 2.412 4.12

4 18 15 8 90 3.421 4.45

5 14 25 4 20 5.522 4.56

6 18 25 2 50 6.101 5.12

7 6 25 8 70 2.585 3.12

8 10 25 6 90 3.921 4.21

9 18 35 6 20 3.812 5.31

10 14 35 8 50 4.912 4.92

11 10 35 2 70 8.156 4.72

12 6 35 4 90 9.121 3.56

13 10 45 8 20 4.125 4.31

14 6 45 6 50 3.912 3.84

15 18 45 4 70 10.121 5.54

16 14 45 2 90 9.312 5.62

Table 6: Grey relation generation values for output response
parameters obtained using DS-EDM of SS630 with Cu-W
electrode.

Ideal seq.
MRR (mm3/min) SR (μm)
Larger the better Smaller the better

1 0 0.932

2 0.41639 0.68

3 0.118871 0.6

4 0.234198 0.468

5 0.47434 0.424

6 0.540519 0.2

7 0.138644 1

8 0.291348 0.564

9 0.278889 0.124

10 0.404618 0.28

11 0.775403 0.36

12 0.885701 0.824

13 0.314665 0.524

14 0.290319 0.712

15 1 0.032

16 0.907532 0
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with the development of geometrical work via precise con-
straints of boundary and employing variable loads. An
approach called mapped meshing is utilized for meshing the
domain of workpiece. As it is shown in Figures 3–5, there
are four different regions with distinct colors such as red, light
green, light blue, and blue, whereas the red and blue colors
denote the region of boiling and solid metal, while the light
green and light blue denote the zones of liquid and heat
affected, respectively. Usually, the distribution of temperature
on workpiece relies on input control variables such as input
heat percentage, TON, Ip, TOFF, and VG along with the change

in phase. Figure 3 demonstrates the distribution of tempera-
ture attained for 18A of current intensity with 45μsec of pulse
duration, where themaximum andminimumdistributed tem-
peratures are about 800K and 295.16K. Figure 4 illustrates the
amount of material removed for the same current intensity
with pulse duration, where the maximum and minimum heat
flux is about 11.337 w/mm2 and 1.26 w/mm2. The structural
error is demonstrated in Figure 5.

4.2. Results. Figure 6 illustrates the processing of machining
with DS-EDM on SS630 grade, while Figure 7 demonstrates
the workpiece after machining of SS630. As mentioned ear-
lier, MRR and SR are used as he output response parameters
for evaluating the performance of DS-EDM on SS630 grade.
Table 5 lists with the obtained results of output response
parameters with varying of input control parameters.

5. Optimization Using GRA

In a problem of multiresponse, the influence and relationship
between different parameters are complex and not clear. This
is termed as grey which signifies poor and uncertain informa-
tion. The proposed GRA analyzes this complicated uncertainty
among the multiresponses in each system and optimizes it with
the help of grey relational grade (GRG). Therefore, a multire-
sponse optimization problem is reduced to a single response
optimization problem called single relational grade. The
detailed procedure of GRA is described as below:

Step 1: The first step of GRA involves in the normalization
of output response parameters such as MRR and SR for avoid-
ing distinct units and variability mitigation. This is essential
due to that differentiation in one data varies from another data.
An actual value is utilized to gain an appropriate value which
makes the array in the range of [0, 1]. Usually, this is an
approach of transforming the actual data into a corresponding

Table 8: Response table for mean GRG.

Level TON TOFF PF Ip
1 0.5102 0.4841 0.5532 0.6478

2 0.5216 0.4864 0.6147 0.5102

3 0.5402 0.5943 0.4608 0.4892

4 0.5625 0.5698 0.5059 0.4873

Delta 0.0522 0.1102 0.1539 0.1605

Rank 4 3 2 1

Table 9: Response table for signal to noise ratios (larger is better).

Level TON TOFF PF Ip
1 -5.916 -6.414 -5.198 -3.863

2 -5.779 -6.296 -4.385 -5.873

3 -5.672 -4.629 -6.782 -6.271

4 -5.076 -5.105 -6.080 -6.437

Delta 0.840 1.785 2.397 2.575

Rank 4 3 2 1

Table 7: Obtained GRC and GRG values with their corresponding ranks.

Ideal Seq.
Deviation seq. GRC

GRG Rank
MRR (mm3/min) SR (μm) MRR (mm3/min)

SR
(μm)

1 1 0.068 0.333333 0.880282 0.606808 4

2 0.58361 0.32 0.461421 0.609756 0.535588 7

3 0.881129 0.4 0.362023 0.555556 0.458789 12

4 0.765802 0.532 0.395007 0.484496 0.439751 14

5 0.52566 0.576 0.487491 0.464684 0.476087 9

6 0.459481 0.8 0.521115 0.384615 0.452865 13

7 0.861356 0 0.367281 1 0.68364 2

8 0.708652 0.436 0.413684 0.534188 0.473936 10

9 0.721111 0.876 0.409463 0.363372 0.386418 16

10 0.595382 0.72 0.456462 0.409836 0.433149 15

11 0.224597 0.64 0.690039 0.438596 0.564318 6

12 0.114299 0.176 0.813936 0.739645 0.776791 1

13 0.685335 0.476 0.421822 0.512295 0.467058 11

14 0.709681 0.288 0.413332 0.634518 0.523925 8

15 0 0.968 1 0.340599 0.6703 3

16 0.092468 1 0.843928 0.333333 0.588631 5
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data. If the required observation is to be minimized, the
smaller-the-better attributes are proposed for the normaliza-
tion to surmount it into a satisfactory range using the below
formulation:

x∗i kð Þ = max xi kð Þ − xi kð Þ
max xi kð Þ −min xi kð Þ , i = 1,⋯,m ; k = 1,⋯, n, ð5Þ

where the desired value is denoted with x. The data quantity of
experiments and the corresponding response are referred tom
and n. The actual and preprocessed sequence are denoted as
xiðkÞ, and x∗iðkÞ, respectively. The maximum and minimum
values of actual data are represented as max xiðkÞ, and min
xiðkÞ. Table 6 demonstrates the grey relation generation values
for output attributes named MRR and SR where maximum is
better and minimum is better, respectively.
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Figure 8: Main effect plot of mean GRG.
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Step 2: The second step is to compute the grey relation
coefficient (GRC) denoted as ξiðkÞ from the obtained normal-
ized values in Step 1. The computation of GRC is as follows:

ξi kð Þ = Δmin + ξΔmax
Δ0i kð Þ + ξΔmax

, ð6Þ

where Δ0iðkÞ denotes the deviation sequence of the reference
sequence and Δ0i = kx0ðkÞ − xiðkÞk represents the sequence
of comparability, where the reference and comparability
sequences are termed as x0ðkÞ, and xiðkÞ, respectively.

The larger and smaller values of absolute differences of all
the comparability sequences are represented as Δmin and Δmax.
The coefficient of identification is denoted as ξ with the range
of ½0, 1�. In general, this value will be considered as 0.5.

Step 3: This step computes the grey relation grade (GRG)
as shown below:

γi =
1
n
〠
n

k=1
ξi kð Þ, ð7Þ

where the required GRG is represented as γi for i
th experi-

ment and n denotes the response attributes quantity. In gen-
eral, this GRG determines the level of association between
the sequences of reference and comparability. On the other
side, it also represents the overall illustration of all the qual-
ity attributes. Therefore, the optimization problem of multi-
ple responses can be transformed into a solitary
optimization issue using the design approach of Taguchi
with integration of GRA technique. Table 7 lists the obtained
GRC and GRG with ranking values for the bi-objective opti-
mization of MRR and SR responses.

Step 4: Now, this stage determines the control variables
optimal level using the maximum GRG which designates an
improved quality of product. To get this, the aggregated grade
values of all machining control variables should be derived as
listed in Table 8, which is called a table of mean responses
where the maximum of average grade values are selected as
an optimal machining control variable combination for multi-
ple responses.

Table 9 illustrates the response table for signal to noise
(S/N) ratios. Figures 8 and 9 disclose the main effect plots
of GRG and S/N ratios, respectively.

Step 5: This stage uses analysis of variance (ANOVA) to
determine the relevant factors influencing the different
responses with the confidence level of 90%, which provides
valuable data about experimental requirements. So, the pro-
cess of ANOVA avoids the unwanted experimentations by
selecting the best combination of EDM performance proper-
ties. Further, the ANOVA analysis will be useful in determin-
ing the contribution percentage to recognize parameter
dependent effects generated from EDM, because the influence
of each parameter on multiple response cannot be measured
using Taguchi’s design technique. The ANOVA divides the
entire variability of the answer such as squared sum deviations
generated from grandmeanwith the error and parameter con-
tributions. Here, probability of significance is considered as P
values, and it is calculated using Fisher’s F ratio (F value),
which tells the importance of each processing parameter. Fur-
ther, the range of P values should be less than 0.1, which indi-
cates the significant parameters. If the P value (probability of
significance) is less than 0.1, the P value is determined based
on the F value or to get information about the importance of
the chosen answer. In addition, the mean square (MS) is gen-
erated by dividing the degrees of freedom (DF) with available
independent data-based sum of squares (SS), i.e.,MS = SS/DF.
Moreover, in the optimal parameters obtained scenario, F
value is equivalent to MS, i.e., F =MS. Table 10 shows the
GRG based ANOVA simulation findings with the importance
of process parameters on multiple responses.

Step 6: This step enhances the GRG by investigating con-
firmation test results. Finally, the GRG predicted values for
optimal level can be obtained as follows:

Table 10: Obtained results of ANOVA on GRG of DS-EDM on
SS630.

Source DF Adj. SS Adj. MS
F

value
P

value
Remarks

TON 3 0.006265 0.002088 1.07 0.479 “Insignificant”

TOFF 3 0.038677 0.012892 6.59 0.078 “Significant”

PF 3 0.052121 0.017374 8.87 0.053 “Significant”

Ip 3 0.070804 0.023601 12.06 0.035 “Significant”

Error 3 0.005873 0.001958

Total 15 0.173740

Table 11: Obtained values of T-MRR and E-MRR with machining
control variables.

S.
No.

Ip
(A)

PF
(MPa)

TOFF
(μs)

TON
(μs)

E-MRR
(mm3/min)

T-MRR
(mm3/min)

1 6 2 20 15 1.372 1.512

2 10 4 50 15 5.015 4.912

3 14 6 70 15 2.412 2.321

4 18 8 90 15 3.421 3.614

5 14 4 20 25 5.522 5.23

6 18 2 50 25 6.101 5.90

7 6 8 70 25 2.585 2.421

8 10 6 90 25 3.921 3.672

9 18 6 20 35 3.812 3.612

10 14 8 50 35 4.912 5.21

11 10 2 70 35 8.156 8.912

12 6 4 90 35 9.121 9.461

13 10 8 20 45 4.125 3.671

14 6 6 50 45 3.912 3.876

15 18 4 70 45 10.121 11.24

16 14 2 90 45 9.312 8.91
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bγ = γm + 〠
o

i=1
�γi − γmð Þ, ð8Þ

where the total mean GRG is denoted with γm, the mean
GRG at the optimal level of each parameter is represented as
γi, and o is the number of the significant process parameters.
Table 11 lists the obtained values of T-MRR, and E-MRR
with machining control variables for L16 orthogonal array.
The validation of DS-EDM on SS630 grade is done using
the obtained T-MRR computed from isotherm of tempera-
ture observed from FEM analysis with the values of E-
MRR obtained from experimental analysis. Figure 10 illus-
trates the comparative analysis of E-MRR and T-MRR which
discloses a very close relation between numerical and exper-
imental values of MRR.

6. Conclusion

This article aimed on experimental and thermal investiga-
tion of DS-EDM with bi-objective optimization using GRA
approach. In addition, FEM analysis also employed to com-
pute the T-MRR using 2-D axisymmetric with its boundary
conditions by distributing the Gaussian flux. Further, GRA
is used and found the best fit and approximate solutions
for obtaining the optimal combination of process parame-
ters such as Ip, TON, TOFF, and PF. From the confirmation
test results, the optimal combination obtained using GRA
approach is about 12th experiment, i.e., Ip = 6A, TON = 35μ
s, TOFF = 90μs, and PF = 4MPa. The most significant pro-
cess parameters identified using ANOVA are Ip, PF, and
TOFF with 90% confidence values.

Data Availability

The data used to support the findings of this study are
included within the article.

Disclosure

This study was performed as a part of the Employment of
Mekelle University, Tigray, Ethiopia.

Conflicts of Interest

Authors declared that there is no conflict of interest in
publication.

References

[1] R. K. Shastri, C. P. Mohanty, S. Dash, K. M. P. Gopal, A. R.
Annamalai, and C.-P. Jen, “Reviewing performance measures
of the die-sinking electrical discharge machining process: chal-
lenges and future scopes,”Nanomaterials, vol. 12, no. 3, p. 384,
2022.

[2] K. H. Ho and S. T. Newman, “State of the art electrical dis-
charge machining,” International Journal of Machine Tools
and Manufacture, vol. 43, no. 13, pp. 1287–1300, 2003.

[3] T. Muthuramalingam and B. Mohan, “Influence of discharge
current pulse on machinability in electrical discharge machin-
ing,” Materials and Manufacturing Processes, vol. 28, no. 4,
pp. 375–380, 2013.

[4] M. P. Groover, Fundamentals of Modern Manufacturing:
Materials, Processes, and Systems, Wiley, Danvers, 4th edition,
2010.

[5] A. Ahmed, A. Fardin, M. Tanjilul, Y. S. Wong, M. Rahman,
and A. S. Kumar, “A comparative study on the modelling of
EDM and hybrid electrical discharge and arc machining con-
sidering latent heat and temperature-dependent properties of
Inconel 718,” The International Journal of Advanced
Manufacturing Technology, vol. 94, no. 5-8, pp. 2729–2737,
2018.

[6] S. Jithin, A. Raut, U. V. Bhandarkar, and S. S. Joshi, “FEmodel-
ing for single spark in EDM considering plasma flushing effi-
ciency,” Procedia Manufacturing, vol. 26, pp. 617–628, 2018.

[7] E. L. Papazoglou, A. P. Markopoulos, S. Papaefthymiou, and
D. E. Manolakos, “Electrical discharge machining modeling
by coupling thermal analysis with deformed geometry

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18

T-MRR (mm3/min)

E-MRR (in mm3/min)

Figure 10: Comparison of E-MRR and T-MRR obtained using FEM analysis and experimentation of DS-EDM on SS630.

10 Journal of Nanomaterials



feature,” The International Journal of Advanced Manufactur-
ing Technology, vol. 103, no. 9-12, pp. 4481–4493, 2019.

[8] R. Rajendran and S. P. Vendan, “Single discharge finite ele-
ment simulation of EDM process,” Journal of Advanced
Manufacturing Systems, vol. 14, no. 2, pp. 75–89, 2015.

[9] M. M. Bahgat, A. Y. Shash, M. Abd-Rabou, and I. S. El-Mahal-
lawi, “Influence of process parameters in electrical discharge
machining on H13 die steel,” Heliyon, vol. 5, no. 6,
pp. e01813–e01813, 2019.

[10] N. H. Phan, N. V. Duc, and P. V. Bong, “Application of
response surface methodology for evaluating material removal
rate in die sinking EDM roughing using copper electrode,” Sci-
ence and Technology Development Journal-Engineering and
Technology, vol. 1, no. 1, pp. 20–27, 2018.

[11] M. M. Bahgat, A. Y. Shash, M. Abd-Rabou, and I. S. El-Mahal-
lawi, “Effects of process parameters on the machining process
in die-sinking EDM of alloyed tool steel,” in Engineering
Design Applications III., H. A. AÖ, Ed., vol. 124, Springer,
2020.

[12] R. B. R. Chekuri, R. Kalluri, J. K. Palakollu, and R. Siriyala,
“Modeling and optimization of machining high performance
nickel based super alloy nimonic C-263 using die sinking
EDM,” International Journal of Mechanical Engineering and
Robotics Research, vol. 8, no. 2, pp. 196–201, 2019.

[13] S. Rajamanickam and J. Prasanna, “Application of TOPSIS to
Optimize EDM Process Parameters for Small Hole Drilling
of Inconel 718,” in Advances in Manufacturing Processes, K.
Vs and A. A. Mg, Eds., Springer, 2019.

[14] N. Faisal and K. Kumar, “Optimization of machine process
parameters in EDM for EN 31 using evolutionary optimization
techniques,” Technologies, vol. 6, no. 2, pp. 54–54, 2018.

[15] D. G. Dilip, S. Panda, and J. Mathew, “Characterization and
parametric optimization of micro-hole surfaces in micro-
EDM drilling on Inconel 718 superalloy using genetic algo-
rithm,” Arabian Journal for Science and Engineering, vol. 45,
no. 7, pp. 5057–5074, 2020.

[16] R. B. R. Chekuri, R. Kalluri, R. Siriyala, and J. K. Palakollu, “A
study on die sinking EDM of nimonic C-263 super alloy: an
intelligent approach to predict the process parameters using
ANN. International journal of,” Engineering and Technology,
vol. 7, no. 1.1, pp. 651–654, 2017.

[17] V. Kavimani, K. S. Prakash, T. Thankachan, S. Nagaraja, A. K.
Jeevanantham, and J. P. Jhon, “WEDM parameter optimiza-
tion for silicon@r-GO/magnesium composite using Taguchi
based GRA coupled PCA,” SILICON, vol. 12, no. 5,
pp. 1161–1175, 2020.

[18] R. Chaudhari, J. Vora, D. M. Parikh, V. Wankhede, and
S. Khanna, “Multi-response optimization of WEDM parame-
ters using an integrated approach of RSM–GRA analysis for
pure titanium,” Journal of the Institution of Engineers (India):
Series D, vol. 101, no. 1, pp. 117–126, 2020.

[19] M. Hanif, W. Ahmad, S. Hussain, M. Jahanzaib, and A. Shah,
“Investigating the effects of electric discharge machining
parameters on material removal rate and surface roughness
on AISI D2 steel using RSM-GRA integrated approach,” Inter-
national Journal of Advanced Manufacturing Technology,
vol. 101, no. 5-8, pp. 1255–1265, 2019.

[20] S. S. Miriyala and K. Mitra, “Multi-objective optimization of
iron ore induration process using optimal neural networks,”
Materials and Manufacturing Processes, vol. 35, no. 5,
pp. 537–544, 2020.

[21] S. Kumar, S. K. Ghoshal, P. K. Arora, and L. Nagdeve, “Multi-
variable optimization in die-sinking EDM process of AISI420
stainless steel,” Materials and Manufacturing Processes, 2021.

[22] V. N. R. Jampana and P. S. V. Ramana Rao, “Experimental
investigation and optimization of die-sinking EDM of grade
630 stainless steel using Taguchi approach,” Materials Today
Proceedings, vol. 36, no. 5, pp. 572–582, 2021.

[23] M. Quarto, G. D'Urso, C. Giardini, G. Maccarini, and
M. Carminati, “A comparison between finite element model
(fem) simulation and an integrated artificial neural network
(ANN)-particle swarm optimization (PSO) approach to fore-
cast performances of micro electro discharge machining
(micro-EDM) drilling,” Micromachines, vol. 12, no. 6, p. 667,
2021.

[24] V. N. R. Jampana, P. S. V. Ramana Rao, and
A. Sampathkuamr, “Experimental and thermal investigation
on powder mixed EDM using FEM and artificial neural net-
works,” Advances in Materials Science and Engineering,
vol. 2021, Article ID 8138294, 12 pages, 2021.

[25] R. B. R. Chekuri, D. Eshwar, T. K. Kotteda, and R. S. Srikanth
Varma, “Experimental and thermal investigation on die-
sinking EDM using FEM and multi-objective optimization
using WOA-CS,” Sustainable Energy Technologies and Assess-
ments, vol. 50, article 101860, 2022.

11Journal of Nanomaterials


	Bi-objective Optimization of Process Parameters in Electric Discharge Machining of SS630 Using Grey Relation Analysis
	1. Introduction
	2. Prerequisite for FEM Analysis
	2.1. Governing Equation
	2.2. Boundary Conditions
	2.3. Heat Input
	2.4. Spark Radius
	2.5. Solution Methodology for Thermal Analysis

	3. Materials and Methods
	4. Experimental Setup
	4.1. Thermal Investigation Using FEM
	4.2. Results

	5. Optimization Using GRA
	6. Conclusion
	Data Availability
	Disclosure
	Conflicts of Interest

