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Due to their unique electrical performance and simple structure, memristors exhibit excellent application prospects for future
information technology. In this work, we fabricated Pt/Ti/AlOx/CeOx/Pt memristors demonstrating electroforming-free bipolar
resistive switching behavior with low operating voltage (−1 to 1V), stable endurance, and retention. Space-charge limited
conduction (SCLC) as well as the formation and rupture of conductive filaments are responsible for the resistive switching
behavior. Increasing the magnitude of the RESET voltage could generate multistate resistive switching. We studied the synaptic
characteristics of the device by obtaining multilevel conductance states and investigating the relationship between the device
resistance, pulse amplitude, pulse width, and pulse number. By applying programmed pre and postsynaptic spiking pulses,
spike-timing dependent plasticity was observed. This study shows that the device is suitable for multivalue storage and can be
used as an electronic synapse device in artificial neural networks.

1. Introduction

The rapid development of complementary metal-oxide-
semiconductor (CMOS) integrated circuit technology has
brought the information age [1]. However, the emergence
of memory walls has limited its further development [2–4].
In addition, artificial neural networks (ANNs) and large-
scale calculations have brought significant challenges to cur-
rent computing hardware [5–7]. The two-terminal structure
and unique electrical characteristics of memristors have been
widely studied [3, 8, 9]. The resistance of a memristor can be
modulated by applying voltage or electron flux through it,
where it will remain after electrical stimulation is stopped
[8, 10–12]. Furthermore, the resistance of a memristor can
be incrementally modulated by voltage pulses, offering sig-
nificant potential for multilevel data storage [13–15]. More-
over, these multilevel conductances can also be used to

simulate the weights of ANN, which has also been consid-
ered an ideal device for hardware neural networks (HNNs)
[14, 16–18].

The resistance switching mechanism of the memristor
primarily includes metal ion migration, oxygen vacancy
migration [19], and charge effects [18, 20–25]. In the oxygen
vacancy migration mechanism, the multilayer memristor
generally exhibits better performance than the single-layer
memristor due to the more controllable formation/breakage
of conductive filaments (CF) between the electrodes [26].
CeOx is a promising multilevel switching material because
it can generate and modulate oxygen vacancies by changing
the valence states of Ce cations (Ce3+ and Ce4+) under differ-
ent applied electric fields [27–31]. Therefore, the resistance
of the CeOx layer can be modulated by applied voltages.

Recently, some studies have reported on the characteris-
tics of cerium oxide-based memristors and their related
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multilayer film structures. Kim et al. reported on Pt/CeO2/Pt
devices with artificial synaptic characteristics, which exhibit
polarity-dependent analog memristive switching [32]. Hsieh
et al. reported on HfOx/CeOx bilayer memristors, which
have forming-free, low-voltage, and analog characteristics
[33]. In addition, Muhammad et al. demonstrated multilevel
bipolar resistive switching characteristics in Ni/CeO2−x/ITO/
glass devices by controlling RESET voltage and current com-
pliance [34]. However, the realization of both multivalue
storage and use as an electronic synapse device based on
the pulse voltage (less than 1V in amplitude) of the CeOx
multilayer film device has not been reported. We observed
that by rationally designing the device structure of multiple
layers, memristors could exhibit better and more diverse
performance [27, 28, 33, 35]. Compared to these studies
[27–34], our study designed a Pt/Ti/AlOx/CeOx/Pt multi-
layer structure memristor that has a low working voltage
and good working properties such as multivalued character-
istics, neuroplasticity, and learning mechanism simulation.
In this work, all characteristics of the Pt/Ti/AlOx/CeOx/Pt
multilayer memristor were studied.

The innovation in this work consisted of the design of a
ceria-based multilayer memristor device structure, which
provided regulation and improvement to the performance
of a single-layer ceria memristor. Compared to previous
ceria-based memristors, the memristor designed in the pres-
ent study exhibits a variety of multistate, synaptic and
forming-free performance characteristics under a small
operating voltage. This improves the usability and practical-
ity of the ceria-based memristors. This multilayer memristor
design method, based on a single functional layer, provides
an ideal approach for the expansion and improvement of
memristor performance.

This device has forming-free and multivalued character-
istics by DC voltage sweep. Furthermore, the Pt/Ti/AlOx/
CeOx/Pt device can also modulate the resistance based on
the input pulse amplitude and emulate the STDP learning
rule with good repeatability. The storage device based on
Pt/Ti/AlOx/CeOx/Pt has the potential to be used for adaptive
calculations in neuromorphic systems. Furthermore, we sys-
tematically explained the multivalue and synaptic character-
istics of the device and reveal the relationship between the
electrical performance and the conduction mechanism.

2. Materials and Methods

A JGP560C15 ultrahigh vacuum magnetron sputtering coat-
ing system was used to manufacture the device along cham-
ber pressure below 5 × 10 − 5 Pa. A CeOx layer (~50 nm) was
deposited onto the Pt/Ti/SiO2/Si substrates by radio fre-
quency (RF) magnetron sputtering, and Ar and O2 at a rate
of 1 : 2 were used as the working gases. The chamber pres-
sure was maintained at 2.5 Pa with an RF power value of
60W. Then, an AlOx layer (~50 nm) was deposited onto
the CeOx/Pt/Ti/SiO2/Si substrate with high-purity Ar. The
working pressure was maintained at 2.5 Pa with an RF power
value of 60W. Additionally, a Ti layer (~20 nm) was depos-
ited onto the AlOx/CeOx/Pt/Ti/SiO2/Si substrates by sputter-
ing the high purity Ti target (99.99%) in high-purity Ar. The

chamber pressure was maintained at 1 Pa with an RF power
value of 60W. Finally, the Pt top electrode with a diameter
of ∼400μm was deposited using a shadow mask. X-ray pho-
toelectron spectroscopy (XPS, ESCALAB 250Xi) was used to
analyze the composition of the multilayer structure, and the
current-voltage (I-V) characterizations of the Pt/Ti/AlOx/
CeOx/Pt devices were measured by a Keithley 4200 semicon-
ductor parameter analyzer.

3. Results and Discussion

Figure 1(a) depicts the structure of the device consisting of
the Ti insert layer, AlOx/CeOx switching layer, and Pt elec-
trodes. We applied voltage to the top Pt electrode while the
bottom Pt electrode was grounded. Figure 1(b) shows the
Ce 3d levels of the CeOx film, where the red line corresponds
to the Ce4+ ions with peaks at 882 eV (v), 888.5 eV (v2),
897.9 eV (v3), 900.5 eV (u), 907 eV (u2), and 916.3 eV (u3).
The blue line corresponds to the Ce3+ ions with peaks at
883.7 eV (v1) and 902.1 eV (u1). Symbol u and v represent
the 3d5/2 and 3d3/2 spin-orbit components, respectively,
[36]. This shows that Ce3+ and Ce4+ coexist in the CeOx film,
and the device contains some oxygen vacancies in the CeOx
film layer. The deconvoluted O 1 s in CeOx is shown in
Figure S3. These peaks are related to the oxygen vacancies,
lattice oxygen, and surface oxygen species.

Figure 1(c) shows the I–V curve of the Pt/Ti/AlOx/CeOx/
Pt device under direct current (DC) sweeping at room tem-
perature, where no forming process was needed. The sweep-
ing rate was 0.24V/s; the sweeping step was 0.01V, and the
voltage-time curve of the DC sweep is shown in Figure S2
(a). The pristine device was in a high resistance state
(HRS). Then, a positive sweep voltage was applied to the
device with current compliance (Icc) of 8mA to prevent a
dielectric breakdown. When the voltage reached 0.6V, the
current of the device suddenly increased to Icc, and the
device changed into the low resistance state (LRS), which is
denoted as the SET process. The device remained in LRS
when the sweep voltage decreased from 1V to 0V. When
the voltage bias was swept from 0V to −1V, the cell
transformed from LRS to HRS, and this process is called
RESET. Then, a negative sweep voltage of −1V→0V was
applied again, and the device remained in HRS. Resistive
switching where the SET and RESET processes occur at
opposite polarities and is considered as bipolar switching
behavior. Figure 1(d) shows the retention characteristics of
HRS and LRS measured at room temperature. The 0.01V
read voltage was applied every 1 s, and the resistance values
of LRS and HRS were observed as stable over 2000 s. The
DC I–V curve of the Pt/Ti/AlOx/CeOx/Pt device in 100
consecutive cycles is shown in Figure S1(a). The
distribution of SET and RESET voltages of the Pt/Ti/AlOx/
CeOx/Pt device is shown in Figure S1(b), and the mean
and standard deviation for Vset and Vreset are shown in
Figure S1(c). The cell to cell variation is shown in
Figure S1(d). The device has a small operating voltage, as
well as forming-free and retention characteristics, which
can contribute to the decreased complexity of the
peripheral circuit design.
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To understand the conduction and switching mechanisms
of the Pt/Ti/AlOx/CeOx/Pt device, the ln(|V|)–ln(|I|) charac-
teristic curve was studied, and the fitted curves of the positive
and negative sweep region are shown in Figure 2(a) and
Figure 2(b). In LRS, we observed that Ohmic conductance best
fit the curve in both the positive and negative bias voltage
regions, which is usually observed in the conductive filament
model. In HRS, the two fitted slopes suggest that the carrier
transport mechanism in the HRS followed space-charge lim-
ited conduction (SCLC) model [30, 37–42]. SCLC has three
different regions, the Ohmic region (I∝V), the modified
Child’s law region (I∝ V2), and the trap-filled-limit (TFL)
region (I ∝ Vn, n > 2) in a high electric field. The Child’s law
region can be described by [43]

I = εμ0Nce−E/KT /Ntd
3� �
V2, ð1Þ

where ε is the dielectric constant; μ0 is the carrier mobility; Nc
is the density of states in the valence band; E is the effective
trapping potential; k is the Boltzmann’s constant; T is the tem-
perature; N t is the number of traps, and d is the effective film
thickness.

According to the curve fitting and XPS analysis results,
we determined the conduction and resistance switching
mechanisms of the device. As shown in Figure 2(c), at first,

the sweep voltage was small, and most of the electrons
injected into the resistive switching layer were thermally
generated electrons. The fitted slope was approximately
1.29. This I-V curve region corresponded to I ∝V . As the
positive voltage increased, the unfilled trap center was grad-
ually occupied by electrons, and the slope of the fitted plot
increased to 1.93 which corresponded to the I ∝V2 region.
When the applied voltage was sufficiently high, and most
of the traps were completely occupied by electrons, the slope
of the fitted plot increased to 2.83 which corresponded to the
I ∝Vn region. The fitting mechanism data (Ohmic and
SCLC) are shown in Figure S4 (a–d) and Figure S5 (a–d).

When a sufficient internal electric field was generated,
oxygen vacancy CFs were formed. Afterward, the resistance
of the device abruptly switched from HRS to LRS. Due to
the oxygen vacancy, CF has small resistance; the I-V curve
region corresponded to I ∝V . When a negative voltage
was applied to the top Pt electrode, the CFs gradually broke,
leading to the resistance switching from LRS to HRS. The
HRS in the negative sweep region (from −1V to 0V) where
the slope decreased from 3.66 to 1.66, and finally to 1.11,
also followed SCLC model. In summary, the resistance
switching of the device results from SCLC and the oxygen
vacancy CFs mechanism. Because some oxygen vacancies
formed after the device was fabricated, the device does not
require the forming process.
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Figure 1: (a) Schematic of the Pt/Ti/AlOx/CeOx/Pt device. (b) Ce 3d levels of CeOx film. (c)Typical bipolar I–V curve of the Pt/Ti/AlOx/
CeOx/Pt device. (d) The retention test of the Pt/Ti/AlOx/CeOx/Pt device with a 0.01V read voltage.
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Next, we studied the multilevel resistive switching on
another Pt/Ti/AlOx/CeOx/Pt device. As Figure 3(a) shows
the different RESET stop voltages (−0.6 V, −0.7 V, −0.8V,
−0.9V, and −1V) to achieve a five-level HRS. The reading
voltage was 0.01V, and the resistance was 94 Ω, 434Ω,
865Ω, 1357Ω, and 2102Ω, respectively. The controllability
of the resistance during the reset process is found to be appro-
priate for multivalue storage. Figure 3(b) shows the resistance
uniformity of the 5 resistance states in the 70 continuous
cycles. Figure 3(c) shows the data retention performance of
the Pt/Ti/AlOx/CeOx/Pt multilayer memristor with a 0.01V
read voltage. Moreover, this device can obtain different R_
LRS by controlling different compliance currents. Figure S6
shows different Vreset limitations to control R_HRS and
different compliance currents to control R_LRS.

The five-level HRS corresponds to the partial rupture of
the multifilaments with increasing negative voltage in the
multilayer film. As larger negative voltages were applied to
the device, more filaments were ruptured and the device
showed higher resistance states. A similar physical model
was explained by Kim et al. [32]. This device is promising
for high-density storage memory applications due to its reli-
able multilevel data storage ability.

Subsequently, we studied the synaptic weight modifica-
tion of the device which is similar to biological synapses.
As shown in Figure 4(a), at first, the resistance of the device
was set to about 1000 Ω. Then, 11 pulses of 50 ms with the
amplitudes of voltage consecutively increasing from 0.45 to
0.55 V with a step of 0.01 V were applied. With these posi-
tive voltage pulses, the resistance gradually decreased. 8

pulses of 50 ms with the amplitudes of voltage consecutively
decreasing from −0.6 to −0.75 V with a step of 0.025 V were
applied, and the resistance gradually increased. A read volt-
age of 0.01 V was used to measure its resistance state after
each pulse voltage. The conductance can be adjusted repeat-
edly by applying pulse cycles composed of pulses with differ-
ent amplitudes. The applied pulse cycle is shown in
Figure S2(b). As shown in Figure 4(b), within the cycles of
500 pulses, the continuously adjustable conductance of the
device shows good stability.

Furthermore, the relationships between device resistance
modulation, pulse amplitude, pulse width, and pulse number
were studied. As shown in Figures 5(a–d), the greater the
amplitude and width of the pulse is, the greater modulation
of device resistance is in both the depression and potentia-
tion parts. However, when continuous pulses were applied
to the device, the resistance of the device gradually decreased
or increased, and finally reached a limit, where the greater
the amplitude and width of the pulse is, the greater the limit
is. Hence, each method for the modulation of device con-
ductance has its corresponding limit. After reaching this
limit, its conductive state will remain stable, which is similar
to the phenomenon of biological synaptic saturation, and
further research is needed [44].

For biological synapses, the most important rule will be
STDP [45–49]. Generally, STDP indicates that if the pre-
spike precedes the postspike (Δt > 0); then, long-term poten-
tiation (LTP) will occur, and synaptic weight (w) will
increase [14]. If the prespike follows the postspike (Δt > 0),
long-term depression (LTD) will happen and the synaptic
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Resistance evolution of the Pt/Ti/AlOx/CeOx/Pt multilayer device over 500 pulse cycles.
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Figure 3: (a) I-V curves of the Pt/Ti/AlOx/CeOx/Pt multilayer memristor measured by DC double sweeping. Different RESET stop voltages
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weight (w) will decrease. At the same time, the smaller jΔtj
and the greater jΔwj, where Δw can be defined as ðGafter −
GbeforeÞ/Gbefore , and the range of Δw follows (0, +∞) and
(−1, 0).

As shown in Figure 6(a), the waveform was designed to
generate the STDP phenomenon and is composed of contin-
uous single pulses. The negative pulse occupied the first time
slot, and then the positive pulse with reduced amplitude
followed in the subsequent time slot. When the prespike
and postspike overlapped, a programming pulse could be
generated with an amplitude sufficient to modulate the resis-
tance. The voltage dropped on the device is defined as the
prespike voltage minus the postspike voltage. As the spike
timing was tighter, the negative pulse would overlap the pos-
itive pulse with a larger amplitude, resulting in a larger resis-
tance modulation. If the prespike preceded the postspike, a
positive programming pulse (left in the Figure 6(a)) would
be generated. Otherwise, a negative programming pulse
would be generated (right in the Figure 6(a)). As shown in
Figure 6(b), we simulated this STDP learning rule with this

device. At Δt > 0 and Δw > 0, LTP occurred; while for Δt <
0 and Δw < 0, LTD occurred, and the spike timing was tigh-
ter, resulting in a larger resistance modulation. The experi-
mental learning data for the STDP rule was well fitted to
the exponential function, and fitting parameters are shown
in Figure 6(b).

ΔW = Aexp −Δt/τð Þ + Δw0, ð2Þ

where ΔW is the change in synaptic weights; A is the scaling
factor, and τ is the time constant. The characteristics of
adjustable conductance, synaptic saturation, and simulating
the STDP learning rules indicate that storage devices based
on Pt/Ti/AlOx/CeOx/Pt have the potential to be used for
adaptive calculations in neuromorphic systems.

In addition, the endurance and robustness of the Pt/Ti/
AlOx/CeOx/Pt device need to be further optimized for
commercial applications of multivalued and synaptic
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characteristics, according to Mario Lanza et al. [50]. In fur-
ther experiments, we plan to insert a layer with good endur-
ance performance or dope in the switching layer to
effectively improve the tolerance of the device.

4. Conclusions

In this work, we fabricated a multilayer structure of Pt/Ti/
AlOx/CeOx/Pt device. The SCLC and oxygen vacancy CFs
mechanisms were used to explain the electrical characteris-
tics of the device. There are several key advantages of this
device: (i) this device is forming-free and has cycle-to-cycle
as well as device-to-device consistency, which is beneficial
to lowering the complexity of the circuit architecture; (ii)
this device has nonvolatile and recyclable multivalued char-
acteristics, which could address the major concern in the
memory industry; (iii) this device has synaptic properties
such as adjustable conductance, synaptic saturation, and
simulating STDP learning rules, which has immense poten-
tial in artificial neuromorphic computing. All of these
unique electrical performances suggest that the device has
the potential to avoid the von Neumann bottleneck and
shows great potential in both the emerging neuromorphic
computation system and multivalue storage applications.
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Supplementary Materials

Figure S1 shows the endurance characteristic, the distribu-
tion of SET and RESET voltage, the standard deviation and
mean for Vset and Vreset and cell to cell variation of the
Pt/Ti/AlOx/CeOx/Pt device. Figure S2. shows the voltage-
time curve of DC sweep and the pulse cycle curve of figure
4(a). Figure S3. shows the deconvolution of the O 1 s spec-
trum of CeOx. Figure S4. shows the double logarithmic I-V
characteristics of Pt/Ti/AlOx/CeOx/Pt device in positive
bias. Figure S5. shows the double logarithmic I-V character-
istics of Pt/Ti/AlOx/CeOx/Pt device in negative bias. Figure
S6. shows the I-V sweep cruve of different Vreset limitations
to control R_HRS and different compliance currents to con-
trol R_LRS, respectively. (Supplementary Materials)
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