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This article evaluates the effect of wear parameters on composite materials. Aluminium alloy 7178 alloys with various nano
titanium diboride weight percentages were prepared using stir casting. A pin-and-disc test rig was utilized to carry out the dry
sliding wear test. Using Taguchi’s experiments for optimization, the L27 orthogonal array was designed (D.O.E.). The SNR and
ANOVA techniques were used to identify the percentage of responses attributable to the input parameters. Both the wear rate
and coefficient of friction increased with higher loading levels. This parameter, load intensity, had the most significant
influence on wear rate and C.O.F. and sliding distance and velocity. Material removal was prevented at all times by nano
titanium diboride particles embedded in the matrix alloy. AA7178 was treated with nano titanium diboride particles to
improve its wear resistance.

1. Introduction

Modern manufacturing has relied onmetal matrix composites
for many years to replace the need for high-density materials
[1]. As compared to other materials, aluminium matrix com-
posites (AMCs) offer several advantages. Additional charac-

teristics include having good wear and corrosion resistance,
as well as a low thermal expansion coefficient. Using a variety
of methods, one can create an assortment of AMCs [2]. All of
these metalworking techniques—such as powder metallurgy
(PM), stir casting (S.C.), and composite casting (CC)—are
used in liquid infiltration (LI) [3]. For the homogeneous
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dispersion of ceramic particles, mechanical stirring is an inex-
pensive and simple solution [4].

A metal matrix composite is made up of matrix material
and reinforcing particles. Stir casting is a process for fabri-
cating composites in a liquid state. Matrix materials can be
enhanced with a hard particulate material to improve their
mechanical qualities [5–7]. In comparison to steel, alumin-
ium matrix composites (AMCs) are much lighter, cheaper,
and provide better mechanical and tribological properties
[8–10]. Wear control factors were studied in these studies
to see their effects on wear rate (i.e., reinforcements, loads,
sliding distance, and slipping velocity). Wear rate is largely
determined by load [11]. It is affected by sliding velocity,
the level of reinforcement in the structure, and other factors
[12]. The relationship between reinforcement volume frac-
tion, grain size, and sliding distance is important because
of abrasive wear [13]. The rate of wear was greatly affected
by the volume fraction of reinforcement [14]. Hybrid Al/alu-
mina/graphite AMCs have high wear and friction, according
to a study. As the TiC content in the AA7178 composites
increased, wear and C.O.F. decreased [15]. The wear resis-
tance of an alumina 7075 alloy Ni premised composite was
studied experimentally [16]. AA7075 composites incorpo-
rating Si3N4 particles produced by stir casting were studied
to estimate the wear resistance and C.O.F. SiC reinforcement
reduced the volumetric wear loss of Al7075/SiC AMCs [17].
Through the use of Al-Si3N4 nanocomposite materials,
researchers discovered how stress, wear, and sliding distance
influence COF. Wear rate and C.O.F. of hybrid composites
were lower when compared to nanocomposite materials
[18]. SiC and TiO2 particulate composites in aluminium
alloy LM25 were studied on a pin-on-disc machine. When
the TiO2 content increased, C.O.F. and wear rate decreased.
TiO2 particles lubricate and harden, improving wear resis-
tance [19].

On the other hand, TiS2-reinforced LM13 aluminium
AMCs were exposed to liquid metal during a dry sliding
wear test. According to the study, the load had the greatest
impact on the rate of wear. Because of the higher surface
damages, the morphology of the eroded surface showed
more wear at high loads. Al/AlB2 composites were analyzed
using Taguchi’s wear parameters during dry sliding. Com-
pared to unreinforced aluminium matrix composite, which
is composed of a matrix of finely divided aluminium parti-
cles, it has better tribological properties [20]. A variety of
TiB2 particles were used to reinforce Al7075/TiB2 alumin-
ium matrix composites (0, 5, and 7.5 per cent). The micro-
hardness and strength of TiB2 particles increase with

increases in their weight percentages [21]. Material proper-
ties, particularly those involving mechanical strength, must
be understood when using TiB2-reinforced aluminium
metal matrix composites prepared through stir casting. Add-
ing TiB2 particles also increased the composite’s ultimate
tensile strength, which is a measure of the overall strength
of the composite. Load normal and reinforcement ratios
are highly correlated with wear rate [22]. All these factors
play a role in composites’ wear behaviour. The use of statis-
tics to assess the wear behaviour of AMCs can save time and
money. They report on the wear and morphological behav-
iour of Al7178 alloy-nano titanium diboride particle-
reinforced composites fabricated through stir casting tech-
nique, based on an extensive literature review and a thor-
ough literature search. These Al7178 alloy/nano titanium
diboride-reinforced test pieces were subjected to stir casting
tests, which involved dry sliding wear as the drying method.
Several variables, such as the weight, the sliding velocity, and
the distance of sliding, were examined in experiments with a
pin-on-disc apparatus. To locate the optimal wear and coef-
ficient of friction settings, a Taguchi test was used for a com-
posite sample [23, 24].

2. Materials and Methods

2.1. Matrix and Reinforcement Selection. Nanoparticles of
TiB2 are used as reinforcement. Titanium diboride (TiB2)
is an excellent ceramic material with great strength and
endurance, as seen by its comparatively high melting point,
hardness, strength-to-density ratio, and wear resistance.
Nano titanium diboride has the same chemical composition
as Al7178 (see Tables 1 and 2. In the base matrix, nano tita-
nium diboride particles of 50-60 nm size are mixed (0, 2, 4,
or 6 per cent).

2.2. Composite Specimen Preparation. A liquid state stir-
casting technique is used to produce Al7178 aluminium
alloy and nano titanium diboride. Previous research guided
the researchers’ conclusions, and thus, they claim that the
metal matrix created through stir casting is of a higher qual-
ity than other fabrication methods. Figure 1 shows how to
properly set up for stir-casting fabrication. To melt large
Al7178 aluminium alloy ingots, a graphite crucible was
heated for 20 minutes at 450 revolutions per minute in a
gas burner (rpm). Using a muffle furnace, titanium diboride
particles are heated to 600°C before being mixed with oxy-
gen to remove oxides before being mixed. When aluminium
is first melted, 0.5wt% of nano magnesium is added to

Table 1: Different physical properties of nano titanium diboride (TiB2) nano size particulates.

Physical appearance Natural colour Percentage of purity Mass density (g/cc) Size range of the particle

Powder form Grey 98 5.63 50-60 nm

Table 2: Various chemical composition of aluminium alloy (AA7178).

Chemical elements Chromium Ferrous Silica Magnesium Manganese Copper Zinc Titanium Al

Contribution in wt% 0.23 0.21 0.02 2.46 0.04 1.49 4.98 0.01 Balance
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improve wettability, which leads to better mixing. It is used for
stirring in the induction furnace. Table 3 reveals the pure and
aluminium alloy composite specimen’s composition details.

2.3. Dry Slide Wear Test Setup. The wear tests were done
using a pin-on-disc apparatus (Figure 2). An EN31 steel disc
was used to test P.O.D. wear. At constant sliding speeds of
4000 rpm and different applied loads of 15, 25, and 35N, non-
lubricated wear tests were carried out on each specimen over
sliding distances of 750, 1500, and 2250metres, respectively.

Before testing, pin samples were rubbed with emery
paper to ensure effective contact between flat surfaces and
steel discs. An electronic scale with a high degree of accuracy
(less than 1 g) is used to measure the sample weight after it
has been cleaned thoroughly with acetone solution. Weight
loss serves as a point of reference when working out the rate
of wear. When it comes to weight loss, you should wear
attention to the amount of volume you shed for each inch
of sliding distance. The surface morphology of the pins is
examined with a scanning electron microscope after they
have been subjected to a wear test.

2.4. Taguchi Optimization—Experimental Plans. To research
and model the impact of process variables on response var-
iables, we use the D.O.E. design technique. Application load,
sliding velocity, and sliding distance were used in this study
to estimate wear parameters. In Table 4, you will find a list-
ing of parameters and intensity levels. In Taguchi experi-
ments, L27 orthogonal arrays are employed. Orthogonal
arrays must be used when the degree of freedom is less than
or equal to the wear parameters.

In this study, we used a 27-row, 13-column orthogonal
array. Each factor’s level, the desired experimental resolu-
tion, and any cost limitations all play a role in the design
of orthogonal arrays. The Taguchi model led to 27 experi-
ments. This shows how the model reacted to wear and coef-
ficient of friction. In an orthogonal array, there are five
columns. There are five columns of data in the table for
the sliding distance. The applied load is situated in the first
column, slide speed in the second, and sliding speed in the
fifth. This design is intended to help reduce wear and coeffi-

cient of friction. The final result table is made available
(ANOVA). To measure the signal-to-noise ratio, you must
choose a measurement type (for example, based on charac-
teristic type). It is based on the following assumption:
“Smaller is better.” The signal-to-noise ratio is measured in
the laboratory. A logarithmic transformation was applied
to reduce the response loss.

3. Results and Discussions

3.1. Tribological Behaviour of Composites. AA7178/TiB2
aluminium matrix composite reinforced with titanium
diboride particulates exhibits different tribological behav-
iours depending on their weight percentage in dry sliding
wear test apparatus. Using the stir casting method, compos-
ite specimens were poured into moulds. Four different

Figure 2: Wear testing setup.

Figure 1: Stir casting fabrication setup.

Table 3: Pure and aluminium alloy composite specimen’s
composition details.

Designation
of composite
specimen samples

Weight percentage
of matrix material

(AA 7178)

Weight percentage of
reinforcement material
(nanoTiB2 + nanoMg)

AAT0 100 0

AAT2 98 2

AAT4 96 4

AAT6 94 6

Table 4: Optimization parameters with levels.

Optimization
plan level

Wear load
(N)

Sliding velocity
(m/s)

Sliding distance
(m)

1 15 1 750

2 25 2 1500

3 35 3 2250
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composite specimens were subjected to a range of sliding
distances to simulate a dry sliding wear test. Varying weight
percentages produce varying wear and C.O.F. for these com-
posites when considering sliding velocity. The rate of wear
and the C.O.F. both increase as sliding velocity increases.

Aluminium alloy 7178 and Al7178-6wt percent titanium
diboride composites show maximum and minimum wear
rates at a sliding velocity of 1m/s is shown in Figure 3. With
an increase in sliding velocity, the temperature difference
increases between the pin’s surface and the counter disc.
This type of heat can be damaging to your health. So, the
rate of wear will be impacted by this. The wear of the pin
increases as the temperature of the pin is raised.

Figure 4 reveals the coefficient of friction for pure, and
hybrid composite specimens vary with respect to the sliding
velocity. With increasing loads and other input factors
remaining constant, the pin sliding surface’s asperities become
deformed, resulting in a very smooth surface layer that pro-
duces a high flash temperature. Coefficients of static and
dynamic friction increase when sliding velocity increases,
while they decrease when sliding velocity decreases. Al7178,
an 80-per cent mix of the Al7178-Titanium Diboride com-
posite, produces a mechanically mixed layer when compared
to the Al7178-Titanium Diboride composite composites,
which promotes the removal of material during sliding.
When the sliding pin comes in contact with the counter disc
plate, enormous pressure is applied to the contact velocity. It

is the maximum sliding velocity of a surface that causes a
build-up of frictional heat, which raises the surface tempera-
ture and accelerates the formation of oxide layers.

3.2. Results of Statistical Analysis of Experiments. In a variety
of parameter combinations, the orthogonal array method
was used. Minitab 16 was developed specifically for D.O.E.
applications and is commercial software. When measured
using the L27 orthogonal array, composite AAT6 showed
superior tribological properties (see Table 5). AAT0,
AAT2, and AAT4 are available. Delamination and increased
wear are common problems when materials are not rein-
forced with hard reinforcement materials. A recording’s
signal-to-noise ratio (SNR) determines its quality (SNR).
Wear and C.O.F. were found to be affected by the load, slid-
ing speed, and friction coefficient by using an S/N response
table. Sliding speed and distance are critical to wear rate
and friction coefficient. For instance, a bar graph illustrating
the rate of wear or a table illustrating the C.O.F. are all good
examples of this type of illustration. Using the S/N ratio as a
guide, it is possible to identify the conditions under which
the wear rate and C.O.F. are at their lowest. If P2 is equal
to 20 Newtons, V3 is equal to 3m/s, and S3 is equal to
2250, the answer is “yes.” Wear and C.O.F. were found to
be affected by load, sliding speed, and friction coefficient
by using an S/N response table. Sliding speed and distance
are important in terms of wear and friction coefficient. This
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Figure 4: Coefficient of friction for pure and hybrid composite specimens varies with respect to the sliding velocity.
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Figure 3: Comparison of wear rate in pure and hybrid composite materials depending on sliding velocity.
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type of illustration could be considered an example of the
visual element known as an illustration: a bar graph that
illustrates the rate of wear or a table that illustrates the
C.O.F. When the S/N ratio is used as a guide, then, it is pos-

sible to locate the condition that minimizes wear and coeffi-
cient of friction. Yes, if P2 is equal to 20 Newtons, V3 is
equal to 3m/s, and S3 is equal to 2250. Results obtained
using an S/N response table have shown that parameters

Table 5: Taguchi orthogonal array for AAT6 hybrid composite (94wt:%AA7178 + 6%TiB2).

Exp. no. Wear load (N) Sliding velocity (m/s) Sliding distance (m) Wear rate (mm3/m) S/N ratio (db) CoF S/N ratio (db)

1 10 1 750 0.00356 48.785 0.412 8.6547

2 10 1 1500 0.00399 47.809 0.379 9.5202

3 10 1 2250 0.00395 46.853 0.341 10.4722

4 10 2 750 0.00391 51.070 0.321 11.5194

5 10 2 1500 0.00387 50.049 0.301 10.3675

6 10 2 2250 0.00383 49.048 0.283 10.6626

7 10 3 750 0.00379 48.557 0.312 11.7288

8 10 3 1500 0.00376 47.586 0.343 11.8650

9 10 3 2250 0.00372 46.634 0.377 11.6116

10 20 1 750 0.00280 50.983 0.314 11.9421

11 20 1 1500 0.00322 49.963 0.295 9.4920

12 20 1 2250 0.00319 48.964 0.278 10.4504

13 20 2 750 0.00316 47.985 0.396 10.6285

14 20 2 1500 0.00312 47.025 0.330 10.4412

15 20 2 2250 0.00309 49.376 0.301 9.9279

16 20 3 750 0.00306 51.845 0.283 10.7479

17 20 3 1500 0.00303 46.661 0.404 10.6785

18 20 3 2250 0.00243 52.260 0.264 12.5392

19 30 1 750 0.00263 51.025 0.384 11.2717

20 30 1 1500 0.00289 45.923 0.290 11.4972

21 30 1 2250 0.00318 41.331 0.345 11.7271

22 30 2 750 0.00314 45.464 0.269 11.9617

23 30 2 1500 0.00311 50.010 0.296 12.2009

24 30 2 2250 0.00308 45.009 0.326 10.3708

25 30 3 750 0.00305 49.510 0.290 9.3337

26 30 3 1500 0.00302 47.034 0.319 10.1674

27 30 3 2250 0.00299 39.979 0.284 10.3708

0.004
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mean data
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Figure 5: Wear Rate Main Effects plot for Means (AAT6 Composites)
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such as load, sliding speed, and friction affect wear and
C.O.F. Sliding speed and distance significantly affect the
wear rate and friction coefficient. Another illustration of this
type would be a bar graph or table illustrating the rate of
wear, and a third is a linear graph or equation showing the
C.O.F. S/N ratio can help in determining the specific condi-
tions under which wear and coefficient of friction are at their
lowest. In this case, the answer is “yes.” If P2 is equal to 20
Newtons, V3 is equal to 3m/s, and S3 is equal to 2250.

3.3. Analysis of Variance Results for Wear Test. Figure 5
reveals the wear rate main effects plot for means (AAT6
composites). A variance analysis was performed on the
experimental data in order to determine the effect of wear
parameters on performance measures. ANOVA reveals
which independent variable is dominant and what percent-
age of variance is attributable to that independent variable,
based on the results of an experiment. Three factors are var-

iable on three levels and interact with each other, according
to new research. The results of the analysis of variance for
wear rate and coefficient of friction are provided in
Tables 6 and 7. Based on ANOVA, the amount of load has
a larger impact on wear rate and C.O.F. than any other sin-
gle factor. Charge, sliding speed, and distance are all related
to wear. We found that the sliding speed and the distance, as
well as load interactions, had negligible effects on sliding
speed and distance. Figure 6 reveals the C.O.F.—main effects
plot for means (AAT6 composites).

“All hybrid aluminium alloy composite specimens had
pooled errors of less than 2 per cent” in the ANOVA table
for wear rate and C.O.F., according to the study. Applying
a load causes wear and C.O.F. to increase. Friction is propor-
tional to wear rate; the higher the applied load and the
higher temperature. As a result, the reinforcing particles do
not degrade during wear, due to the increase in stress caused
by increasing load, material fractures as a result. Due to

Table 7: Optimization response table for signal to noise ratios—smaller is better (coefficient of friction—AAT6 hybrid composites).

Optimum levels Sliding load (N) Sliding velocity (m/s) Sliding distance (m)

1 11.611 10.477 10.747

2 11.865 11.961 10.441

3 11.519 10.37 9.927

Delta 0.782 0.679 0.596

Rank 1 2 3

Table 6: Optimization response table for signal to noise ratios—smaller is better (wear rate AAT6 hybrid composites).

Optimum levels Sliding load (N) Sliding velocity (m/s) Sliding distance (m)

1 51.84 52.26 51.07

2 50.98 51.02 49.96

3 50.08 51.36 49.51

Delta 4.21 3.21 2.64

Rank 1 2 3
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Figure 6: C.O.F.—main effects plot for means (AAT6 composites).
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friction between fractured reinforcing particles and steel
discs, there is a possibility that material will be transferred
from pin to disc. In addition, when the pin is loaded, it loses
more material from its surface as a result of the load.

The wear rate and C.O.F. both decrease as the sliding
speed increases. As well as reducing sliding and wear, the
interfacial region is also responsible for controlling the oxi-
dation temperature of aluminium alloy. The sliding distance
increases the wear rate and C.O.F. Abrasion resistance and
dry sliding wear performance are improved as a result of
the new coating technology used in this application. Due
to their self-lubricating property, aluminium composites
with reinforcement have improved friction and wear proper-
ties. Sliding pins have a layer of reinforcement on the sur-
face, reducing wear.

4. Conclusions

(i) The AA7178 alloy is reinforced with nano titanium
diboride particles fabricated via stir casting method
and analyzed the effect of wear parameters like wear
load, sliding velocity, and sliding distance. To
improve the process control of the stir casting
matrix, we implemented the nano titanium diboride
(NTDB) powder addition that contains 2, 4, and 6
weight percent of Al7178

(ii) To decrease the wear rate and coefficient of friction
by optimizing the control parameters for composite
materials’ dry sliding wear behaviour. No practical
upper limit exists for the amount of wear when
the sliding velocity is 3m/s, and the sliding distance
is 2250m. Sliding mass: 20 kg; velocity of sliding:
1m/s; length of sliding: 1500m; maximum coeffi-
cient of friction

(iii) Wear and friction coefficient were affected by load
and sliding distance, according to a variation analy-
sis (ANOVA). Composites wear out faster due to
load and sliding distance. To improve the wear
resistance, nano titanium diboride (NTDB) is added
as an additive

(iv) Due to the high resistance to wear, metal compos-
ites reinforced with nano titanium diboride particles
(the dry sliding wear behaviour of alloy composites)
have shown particular interest for engine compo-
nents like piston rings, cylinders, and bearings

(v) These optimization methods may be used to opti-
mize further the composite’s wear rate parameters:
particle swarm optimization, genetic algorithms,
and other approaches like that
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