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In this study, the unsteady squeezing nanofluid flow between two plates with thermal radiation has been investigated. The
governing equations of the flow model have been transformed to a set of nonlinear ordinary differential equations (ODEs)
from a set of partial differential equations (PDEs) using a suitable similarity variable. The optimal auxiliary function method
(OAFM) and Runge–Kutta method of order 4 (RK method of order 4) are used for the solution of the modeled problem. The
variation of the squeezing number, Prandtl number, Eckert number, and thermal radiation has been presented. The magnetic
field resists the flow velocity, and the Prandtl number resists the temperature distribution. The increase in volume fraction
decreases the velocity profile whereas increases the temperature profile. The skin friction coefficient and the Nusselt number
are inversely proportional to S. The effect of increasing values of Ec is to decrease the skin friction coefficient Cf and the heat
transfer rate Nux . The increasing value of φ increases the skin friction coefficient and decreases the heat transfer rate.

1. Introduction

The nanofluid consists of the nanometer particle size of the
fluid having less than 10^-9nm, such as copper, aluminum,
silver, silicon, aluminum oxides, and graphite. The base
fluids are water, oil, and ethylene glycol. Choi et al. [1] intro-
duced the term nanofluid and heat transfer features of the
fluids, such as thermal conductivity is enriched by the addi-
tion of nanoparticles into it [2, 3]. The study of heat and
mass transfer for squeezing unsteady viscous flow between
two parallel plates has a wide range of physical applications,
including lubrication systems, polymer processing, food pro-
cessing, hydrodynamical machines, compression, and crop
damage due to freezing, formation, and dispersion. Squeeze
flow, also known as squeezing flow, squeezing film flow, or
squeeze flow theory, is a flow in which a material is squeezed
out between two parallel plates. Josef Stefan studied it in
1874 for the first time. There are several squeeze flow models
that may be used to explain Newtonian and non-Newtonian
fluids that are squeezed under various geometries and condi-

tions. Squeeze flow is used in a variety of scientific and engi-
neering areas, including welding engineering, and materials
science, to name a few. Sheikholeslami et al. [4] used heat
line analysis to simulate a two-phase simulation of nanofluid
flow and heat transfer. Moreover, Sheikholeslami et al. [5]
investigated the unsteady flow of a nanofluid squeezing
between two parallel plates using the Adomian decomposi-
tion method (ADM). Also, the problem of squeezing flow
between rotating disks has been studied by Hamza [6] and
Bhattacharyya [7]. Magnetohydrodynamics (MHD) is the
information of the magnetic assets of electrically conducting
fluids. Plasmas, electrolytes, water, and liquid metals are
examples of magneto fluids. Hannes Alfven [8] was the first
who introduced the field of MHD. MHD has several appli-
cations in the field of industries and engineering such as
plasma, crystal growth, MHD sensors, liquid-metal cooling
of MHD casting, MHD power generation, and magnetic
drug targeting. MHD depends on the strength of the mag-
netic field; the stronger the magnetic field, the greater is
MHD effects and vice versa. MHD includes plasmas, molten
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metals, saltwater, and electrolytes. [9–13]. Seddiqui,
Domairy, and Aziz et al. [14, 15] explored two-dimensional
MHD squeezing flow between parallel plates and parallel
disc. Magnetic nanofluid is a one-of-a-kind material that
combines the qualities of a liquid with a magnetic material
[16]. Magneto-optical wavelength filters [17, 18], optical
modulators, [19], nonlinear optical materials [20], tunable
optical fiber filters [21], optical gratings, and optical switches
have all been discovered to use such fluids [22]. Changing the
magnetic field can change a lot of the physical features of
these fluids. They also served as an excellent model system
for fundamental investigations. Manipulation of nanoparti-
cles with carbon nanotubes has recently been shown to result
in increased thermal conductivity. The thermal characteris-
tics of nanofluids are the parameters that are critical to the
performance of nanofluids. Thermal conductivity, specific
heat, viscosity, and heat transfer coefficient are the four vari-
ables. Solar collector thermal performance is mostly deter-
mined by how thermal characteristics behave under various
operating situations. Temperature, environmental condi-
tions, type of base fluid, particle size and form of the nano-
particle, and volume concentration are all operating
parameters. Taking into account all of these factors, choosing
the right nanofluid is critical for optimum performance.
Based on this idea, scientist studies many important flow
models for various physical aspects [23–26]. Explicit
Runge–Kutta techniques have become popular for wave sim-
ulations due to their great accuracy and low memory require-
ments [27]. The traditional fourth-order Runge–Kutta
technique requires three memory places per dependent vari-
able [28]; however, low-storage approaches may be con-
structed that only require two memory sites per dependent
variable [29]. A third-order Runge–Kutta technique can
readily accomplish this characteristic, while a fourth-order
approach requires an additional stage [30]. Because the eval-
uation of the derivative function is the fundamental cost of
integration, and each level necessitates a function evaluation,
the new stage implies a large rise in cost. Some of the recent
development in the related field can be seen in [26, 31–42].
In this paper, we propose the OAFM [43, 44] for the
squeezed unsteady MHD nanofluid flow in the presence of
thermal radiation. The validity of OAFM is based on the aux-
iliary function which optimally controls the convergence of
the solution. The efficiency of OAFM is proved in compari-
son to the numerical solutions obtained by Runge–Kutta
method of order 4. In the present work, we show how solu-
tions to the modeled problem can be obtained using OAFM,
without the need for complex and complicated calculations
with low specification of computer with high accuracy.
Moreover, OAFM presented here is less computational work
and simple in applications at the first iteration. Up to now,
the squeezed unsteady MHD nanofluid flow in the presence
of thermal radiation has not been studied. The purpose of
this study is to provide an analytical solution of the squeezed
unsteady MHD nanofluid flow in the presence of thermal
radiation by using the newly developed method OAFM. In
the above-mentioned problem, analytical and numerical
methods are used for the solution of the problem. The
numerical methods required the linearization and discretiza-

tion techniques and huge computer memory with operating
time; we show how solutions to the boundary value problem
can be obtained using OAFM, without the need for complex
and involvedmathematical algorithms, and at a relatively low
computing memory and easy approach with high accuracy at
the first iteration.

2. Basic Mathematical Theory of OAFM [43, 44]

Let us look at the OAFM for the differential equation

L f ηð Þð Þ + s ηð Þ +N f ηð Þð Þ = 0, ð1Þ

where L,N denotes the linear and nonlinear operators; s
denotes the source function, f ðκÞ, and is an unknown func-
tion at this stage; the initial/boundary conditions are

B f ηð Þ, df ηð Þ
dη

� �
= 0: ð2Þ

Because finding an accurate solution to severely nonlin-
ear equations is extremely difficult, the proposed approxima-
tion is as follows:

f η, Ekð Þ = f u ηð Þ + f1 η, Ecð Þ, k = 1, 2,⋯s: ð3Þ

Using Equation (3) in Equation (1), we have

L f0 ηð Þð Þ + L f1 η, Ekð Þð Þ + s ηð Þ +N f0 ηð Þ + f1 η, Ekð Þð Þ = 0,
ð4Þ

where Ek, k = 1, 2⋯ s are control convergence parameters to
be determined.

The initial approximation is determined as

L f0 ηð Þð Þ + s ηð Þ = 0, B f0 ηð Þ, f0 ηð Þ
dη

� �
= 0: ð5Þ

The first approximation is obtained as

L f1 η, Ekð Þð Þ +N f0 ηð Þ + f1 η, Ekð Þð Þ = 0, B f1 ηð Þ: f1 ηð Þ
dη

� �
= 0:

ð6Þ

The nonlinear term is expressed as

D1,D2N f o ηð Þ + f1 η, Ekð Þð Þ =N f o ηð Þð Þ + 〠
∞

i=1
u t, Ekð ÞN f o ηð Þð Þ:

ð7Þ

The last term in Equation (7) seems difficult to solve, so
to avoid this difficulty and to fast the convergence of the
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solution. Equation (6) can be written as

L f1 η, Ekð Þð Þ +D1 f0 ηð Þ, Emð ÞF N f0 ηð Þð Þð Þð Þ +D2 f0 ηð Þ, Enð Þ
= 0,

B f1 η, Ekð Þ df 1 ηð Þ, EkÞ
dη

� �
= 0, n = 1, 2⋯ q,m = q + 1, q + 2,⋯s,

ð8Þ

where D1, D2 are optimal auxiliary which depends on f0ðκÞ
and En, Em and FðNð f0ðκÞÞÞ is a function which depends
on the expression appearing within the nonlinear term
of Nð f0ðκÞÞ. The optimal auxiliary function should be
expressed in the sum form of f oðκÞ such as if f oðκÞ are poly-
nomial. Exponential and trigonometric then D1,D2 would be
the sum of polynomial, exponential, and trigonometric,
respectively. Also f oðκÞ would be the exact solution of the
original problem, if Nð f oðκÞÞ = 0. The optimal auxiliary
functions can be obtained frommethod of least square, collo-
cation method Galerkan Ritz methods.

2.1. Convergence of the Method. In order to obtain the
convergent solution, we calculate the optimal constants also
known as control convergence constant by method of least
squares: These optimal constants are resubmitted into origi-
nal equation to get the series solution.

J E1,E2,⋯Eð Þ =
ð
1
R2 η, E1, E2,⋯Esð Þdη, ð9Þ

where I is equation domain.
The unknown constants are established as

∂J
∂E1

= ∂J
∂E2

=⋯
∂J
∂En

= 0: ð10Þ

The mth order approximate solution can be obtained by
these constants so obtained.

3. Formulation of the Problem

The flow and heat transfer of two-dimensional unsteady
squeezing nanofluid via the lateral plates is observed in this
study, as shown in Figure 1.

At any nondimensional time t, the distance between the
two plates is given as

z = ±l 1 − atð Þ12 = ±h tð Þ, for a > 0: ð11Þ

The two plates are squeezed until they touch each other
at 1/α, whereas at α < 0, the two plates are separated. Here, α
is a constant, l is the initial position (at t = 0), and z is the
axial coordinate, which is obviously zero from the flow zone,
with the flow model evaluated along the x and y axes. The
nondimensional time throughout the flow is represented
by the variable t. The heat source and viscous dissipation
effect as a result of friction caused by fluid flow shear are

both protected. As a result, this behavior occurs when the
Eckert number is very high. Meanwhile, the copper material
was enclosed in a nanofluid. A uniform magnet is used
perpendicular to the flow. The following are the govern-
ing equations:

∂u
∂x

+ ∂v
∂y

= 0, ð12Þ

∂u
∂x

+ u
∂v
∂y

+ v
∂u
∂y

= −
1
ρnf

∂p
∂y

+
μnf
ρnf

∂2v
∂x2

+ ∂2u
∂y2

 !
−
σB0

2

ρnf
u,

ð13Þ

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= −
1
ρnf

∂p
∂y

+
μnf
ρnf

∂2v
∂x2

+ ∂2v
∂y2

 !
, ð14Þ

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= knf
ρCpð Þnf

∂2T
∂x2

+ ∂2T
∂y2

 !

+
μnf

ρCpð Þnf
4 ∂u

∂y

� �2
 !

−
1

ρCp
∂qr
∂y

:

ð15Þ

The velocities in the x and y directions are represented by
u and v, respectively. While p, T , T∞, f , and knf are the effec-
tive density, dynamic viscosity, heat capacity, and thermal
conductivity of the nanofluid; ρnf , μnf , (ρCp), and knf are
the effective density, dynamic viscosity, heat capacity, and
thermal conductivity of the nanofluid, respectively.

ρnf = 1 − ϕð Þρf + ϕρp′, ð16Þ

ρCp

� �
nf
= 1 − ϕð Þ ρCp

� �
f
+ ϕ ρCp

� �
p′, ð17Þ

μnf =
μf

1 − ϕð Þ2:5′
Brinkmanð Þ, ð18Þ

knf
kf

=
ks + 2kf − 2ϕ kf − ks

� �
ks + 2kf + 2ϕ kf − ks

� � Maxwell‐Garnettð Þ: ð19Þ

h(t)
y

x

D

2l(1-at)0.5

Nanofluid

Figure 1: Geometry of the flow problem.
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Subject to the following boundary conditions

v = vw = dh

dt ′
T = TH at y = h tð Þ, v = ∂u

∂y
= ∂T

∂y
= 0 at y = 0:

ð20Þ

The radiative heat flux in Equation (4) is given by the
Rosseland formula as

qr = −
4σ∗
3k∗

∂T4

∂y
: ð21Þ

The Stefan-Boltzmann constant and the mean absorption
number, respectively, are σ ∗ and k ∗. We assume that the
temperature variation among the flow is greatly constrained,
and that the expression T4 may be regarded a linear function
of temperature, based on various research, As a result, T4 is
enlarged by disregarding the higher-order terms and utilizing
Taylor series expansion about T .

T44T∞
3 − 3T4

∞: ð22Þ

Substituting Equations (21) and (22) into Equation (15),
we obtain

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
knf

ρCp

� �
nf

∂2T
∂x2

+ ∂2T
∂y2

 !

+
μnf

ρCp

� �
nf

4 ∂u
∂x

� �2
 !

+ 32σ∗T3
∞∂2T

3ρCpk
∗∂y2

:

ð23Þ

To begin, introduce the following quantities:

η = y

l 1 − αtð Þ1/2� � , u = ax
2 1 − αtð Þ½ � f ′ ηð Þ,

v = −
al

2 1 − αtð Þ½ � f ηð Þ, θ = T
TH

,

A1 = 1 − ϕð Þ + ϕ
ρs
ρf

,N = 4σ∗T3
∞

kfρCpk
∗ ,

ð24Þ

f iv − SA1 1 − ϕð Þ2:5 ηf ′′′ + 3f ′′ + f ′ f ′′ − f f ′′′
� 	

−M2 f ′ = 0,

ð25Þ

12A3 + 16A2Nð Þθ′′ + 3 Pr SA2 f θ′ − ηθ′
� 	

+ 3 Pr Ec

1 − ϕð Þ2:5 f ′′
2
+ 4δ2 f ′2

� �
= 0:

ð26Þ

where N denotes heat/thermal radiation as defined by
Equation (10), and A2 and A3 denote dimensionless con-
stants as defined by

A2 = 1 − ϕð Þ + ϕ
ρCp

� �
s

ρCp

� �
f

, A3 =
knf
kf

: ð27Þ

Equations (25) and (26) must now bsssssse solved in the
context of

f 0ð Þ = 0, f 1ð Þ = 1, f ′ 1ð Þ = 0, θ′ 0ð Þ = 0, θ 1ð Þ = 1: ð28Þ
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Figure 2: Effect of the A1 on the f .
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Here, S is the squeezing integer; Pr and Ec are the Prandtl
and Eckert numbers, respectively.

S = al
2vf

, Pr =
μf ρCp

� �
f

ρf kf
, Ec =

ρf

ρCp

� �
f

ax
2 1 − αtð Þ
� �2

,

δ = 1
x
:M2 = σB0

2

ρnf

ax
2 1 − αtð Þ
� �

, f ′′ 0ð Þ = 0,
ð29Þ

The following quantities are categorically used for practi-
cal interest as defined

Cf =
μnf ∂u/∂yð Þy=h tð Þ

ρn f
v2w

,Nu =
−lknf ∂T/∂yð Þy=h tð Þ

kTH
: ð30Þ

Equation (24) provides the following result:

Cf =
l2

x2 1 − αtð Þ RexCf
= A1 1 − ϕð Þ2:5 f ′′ 1ð Þ,

Nu∗ =
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − αt

p
Nu = −A3θ′ 1ð Þ:

ð31Þ

The linear and nonlinear operators of Equations (11) and
(12) are

L f κð Þð Þ = f iv κð Þ ð32Þ

L θ κð Þð Þ = θ′′ κð Þ ð33Þ
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Figure 4: Effect of S on f ′.
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N f κð Þð Þ = −SA 1 − ϕð Þ2:5 ηf ′′′ + 3f ′′ + f ′ f ′′ − f f ′′′
� 	

−M2 f ′

ð34Þ

N θ κð Þð Þ = 3 Pr SA2 f θ′ − ηθ′
� 	

+ 3 Pr Ec
1 − ϕð Þ2:5 f ′′

2
+ 4δ2 f ′2

� �
ð35Þ

From Equation (5), we have

f iv κð Þ = 0 f 0ð Þ = 0, f ′′ 0ð Þ = 0, f 1ð Þ = 1, f ′ 1ð Þ = 0,

θ′′ κð Þ = 0 θ′ 0ð Þ = 0, θ 1ð Þ = 1,
ð36Þ

has solution as

f0 κð Þ = 1
2 3κ − κ3
� �

,

θ0 κð Þ = 1:
ð37Þ

Based on Equation (23), we get

N f o κð Þð Þ = −SA1 1 − ϕð Þ2:5 18κ2 − 18κ − 6η
� �

,

N θo κð Þð Þ = 3 Pr Ec

1 − ϕð Þ2:5 36δκ4 + 36κ2 + 9δ
� �

:
ð38Þ

𝜂
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Figure 6: Effect of A3 on Ѳ:
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In the first approximation based on Equations (8), (32),
(33), and (24), we get

f iv κð Þ +D1 κ, κ2, κ3, Em

� �
−SA1 1 − ϕð Þ2:5 18κ2 − 18κ − 6η

� �� �
+D2 κ, κ2, κ3, En

� �
= 0,

θ′′ κð Þ +D3 κ, κ2, κ3, Ep

� � 3 Pr Ec

1 − ϕð Þ2:5 36δκ4 + 36κ2 + 9δ
� � !

+D4 κ, κ2, κ3, Er

� �
= 0:

ð39Þ

with boundary conditions

f 0ð Þ = 0, f ′′ 0ð Þ = 0, f 1ð Þ = 1, f ′ 1ð Þ = 0,

θ′ 0ð Þ = 0, θ 1ð Þ = 1:
ð40Þ

The OAF can be chosen freely as

D1 f o κð Þ, Emð Þ = − E1 + E2κð Þ,

D2 f o κð Þ, Enð Þ = − E1 + E2κð Þκ − E5 + E6κ + E7κ
2� �
κ2,

7Journal of Nanomaterials



𝜂

𝛿 = 0.75
𝛿 = 0.80
𝛿 = 0.85

𝛿 = 0.90
𝛿 = 0.95

0.5

0.6

0.7

0.8

0.9

1.0

𝜃
 (𝜂

)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 10: Effect of δ on Ѳ:
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D3 f o κð Þ, Ep

� �
= 0,

D4 f o κð Þ, Erð Þ = − E8 + E9κð Þκ − E10 + E11κ + E12κ
2� �
κ2:

ð41Þ

We obtained the first approximate solution

f iv κð Þ +D1 κ, κ2, κ3, Em

� �
−SA1 1 − ϕð Þ2:5 18κ2 − 18κ − 6η

� �� �
+D2 κ, κ2, κ3, En

� �
= 0,

θ′′ κð Þ +D3 κ, κ2, κ3, Ep

� � 3 Pr Ec

1 − ϕð Þ2:5 36δκ4 + 36κ2 + 9δ
� � !

+D4 κ, κ2, κ3, Er

� �
= 0:

ð42Þ

And its solution is given as by putting the values of the opti-
mal constants obtained from the method of least square.

f κð Þ = −
1
280 κ 140 −3 + κ2

� �
+ chst −26 + κ2

� �
−1 + κ2
� �2� 	

,
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θ κð Þ = 20t + 3h −1 + κ2
� �

15 Pr Q 1 + κ2
� �

+ 2t 11 − 4κ2 + κ4
� �

δ2
� �

20t :

ð43Þ

4. Numerical Method of Solution

The differential Equations (25) and (26) along with the side
condition (28) have been solved using the fourth-order
Runge–Kutta method (FORKM) along with the shooting
technique. The nonlinear Equations (25) and (26) of fourth
and second order are reduced to a set of six first-order
simultaneous equations as follows:

f1 = f , f2 = f ′, f3 = f ′′, f4 = f ′′′, f5 = θ, f6 = θ′, f 4′ = f ′′′′, f 6′ = θ′′,
ð44Þ

f 4′ = SA1 1 − ϕð Þ2:5 ηf4 + 3f3 + f2 f3 − f1 f4ð Þ −M2 f ′, ð45Þ

f 6′ = −3 Pr SA2 f1 f6 − ηf6ð Þ − 3 Pr Ec
1 − ϕð Þ2:5

f 23 + 4δ2 f 22
� �
12A3 + 16A2N

:

ð46Þ
The boundary condition now became

f1 0ð Þ = 0, f3 0ð Þ = 0, f 1ð Þ = 0, f2 1ð Þ = 0, f4 1ð Þ = 1, f3 0ð Þ = 0:
ð47Þ

Solving of this system, six initial conditions are needed,
while only three conditions are available. Some initial condi-
tions are not given in the problem. Here, the values of f , f ′
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Figure 12: Effect of M on f ðηÞ.
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and f ′′′ are known as η⟶ 1. These three-end conditions
are used to produce the three unknown initial conditions
by applying the shooting technique.

5. Results and Discussion

5.1. Graphical Discussion. The main focus of the study is to
develop a mathematical model of an unstable nanofluid flow
squeezed between parallel plates, as illustrated in Figure 1.
Figure 2 shows the effect of A1 on the velocity profile f .
An increase in A1 causes to increase the velocity profile f .
Figures 3 and 4 demonstrate the influence of the squeeze
number on the velocity profile. The motion of the plates rep-
resented by squeezing flow is indicated by the squeeze num-
ber S. When S > 0, the plates are moving separately, but
when S < 0, the plates are moving collectively. Positive and

negative squeezing values have distinct effects on the velocity
profile. The velocity rises when the absolute value of the
squeeze number is 0.5, but drops when it is >0.5. An increase
in the stretching parameter causes to increase the velocity
profile. The strecthing parameter assists the flow velocity.
Figure 5 shows the effect of A2 on the temperature profile
θðηÞ. The temperature profile increases by increasing A2.
Also, the effect of A3 on the temperature profile θðηÞ is given
in Figure 6. By increasing the values of A3, a reverse effect as
compared to A2 has been observed. The influence of the
Prandtl number Pr on temperature distributions is seen in
Figure 7. With a large number of Pr , the temperature dis-
tribution obviously decreases, whereas with a small number
of Pr , it grows. Fluids with a low Prandtl number have a
higher thermal diffusivity than fluids with a high Prandtl
number. A high Pr causes the thermal boundary layer to
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Figure 14: Effect of volume friction ϕ on θðηÞ.
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Figure 13: Effect of volume friction ϕ on f ðηÞ.ss
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decrease as a result. The impact is muchmore noticeable for a
small number of Pr because the thermal boundary layer
thickness is so high. The impact of Eckert number and
Prandtl number on the temperature profile is shown in
Figure 8. It is observed that the temperature rises substan-
tially with rising Ec. The effect of s and δ on the temperature
profile is given in Figures 9 and 10. Again, an increase in s
and δcauses to decrease the temperature profile. The effect
of the thermal radiationN on the temperature profile is given
in Figure 11. The increase in thermal radiations causes to
increase the temperature profile, since the thermal radiations
increase the kinetic energy of the particles and their collision
is caused to rise the temperature profile. The effect of mag-
netic field on the velocity profile is presented in Figure 12.
The increase in magnetic fieldM reduces the velocity profile,
since the magnetic field is applied perpendicular to the flow,
and hence the conducting fluid particles feel the opposite
force of magnetic field and hence reduce the velocity profile.
The effect of volume fraction of nanofluid on the velocity and
temperature profiles is given in Figures 13 and 14, respec-
tively. The increase in volume fraction ϕ decreases the veloc-
ity profile whereas increases the temperature profile.

5.2. Tables’ Discussion. The results of OAFM are validated in
comparison with the results obtained from the Runge–Kutta
method of order 4 along with absolute errors as given in
Tables 1 and 2. The OAFM results obtained at just one iter-
ation provide us a simple way to control the convergence
and nearly identical to the results obtained from RKM
fourth-order method. The effects of the squeeze number S
on the skin friction coefficient, Cf , and the Nusselt number,
Nux , are given in Table 3. From Table 3, it is obvious that the
skin friction coefficient and the Nusselt number are inversely
proportional to S. Table 4 displays the effects of the skin
friction coefficient and the Nusselt number for different
values of the Eckret number. It is noticed from the table that
the effect of increasing values of Ec is to decrease the skin
friction coefficient, Cf , and the heat transfer rate Nux. Fur-

ther, from Table 5, it is concluded that the increasing value
of M decreases the skin friction coefficient and increases
the heat rate. The effects of the nanoparticle volume fraction
φ on the skin friction coefficient Cf Nusselt number (the

Table 2: Comparison of the value of rate of velocity profile ϕðηÞ for
different value of η when S = 0:90, Pr = 0:3, Ec = 0:5, A1 = 0:1,
A2 = 0:5, A3 = 0:7, δ = 0:6,M = 1.

η OAFM 4th RKM
Absolute
error

0 0 0 0

0.1 0.14866782146738375 0.14866782146738370 5:3241 × 10−17

0.2 0.29447924328271025 0.29447924328271020 5:3243 × 10−17

0.3 0.4345297029288129 0.4345297029288122 5:3246 × 10−17

0.4 0.5658641096465703 0.5658641096465697 5:3247 × 10−17

0.5 0.6854800169389675 0.6854800169389669 5:3249 × 10−17

0.6 0.7903318397285185 0.7903318397285178 5:3253 × 10−17

0.7 0.8773361110067814 0.8773361110067808 5:3256 × 10−17

0.8 0.9433777722643691 0.9433777722643686 5:3259 × 10−17

0.9 0.9853174912829916 0.9853174912829909 5:3262 × 10−17

1 1.0000000000000002 1.00000000000000007 1:3263 × 10−16

Table 3: Comparison of skin friction and Nusselt numbers for
various values of s.

s Cf Nux
1 -1.24578 0.145875

2 -2.65862 0.0254863

3 -3.54879 0.0354856

4 -3.998547 0.0421586

5 -4.214585 0.0015482

Table 4: Comparison of skin friction and Nusselt numbers for
various values of Ec.

Ec Cf Nux
1 -1.56896 0.025486

2 -2.48523 0.052463

3 -2.012458 0.078563

4 -2.000458 0.0965482

Table 1: Comparison of the value of rate of velocity profile f ðηÞ for
different value of η when S = 0:90, Pr = 0:3, Ec = 0:5, A1 = 0:1,
A2 = 0:5, A3 = 0:7, δ = 0:6,M = 1:

OAFM 4th RKM Absolute error

0 0. 0. 0.00000000

0.1 0.119482 0.119482 1:245789 × 10−17

0.2 0.241044 0.241044 1:02145 × 10−17

0.3 0.365079 0.365079 3:21458 × 10−17

0.4 0.490248 0.490248 2:01245 × 10−17

0.5 0.613586 0.613586 1:02158 × 10−17

0.6 0.730601 0.730601 3:12458 × 10−17

0.7 0.835395 0.835395 2:32489 × 10−17

0.8 0.920813 0.920813 2:87963 × 10−17

0.9 0.97866 0.97866 1:98756 × 10−17

1 1. 1. 1:05896 × 10−16

Table 5: Comparison of skin friction and Nusselt numbers for
various values of M.

M Cf Nux
1 -1.53624 0.0215463

2 -1.68459 0.0020012

3 -1.89654 0.015362

4 -2.12546 0.012156
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heat transfer rate) Nu are given in Table 6. From this table, it
is concluded that the increasing value of φ increases the skin
friction coefficient and decreases the heat transfer rate.

6. Conclusions

In this study, a new analytical method is suggested for the
solution of the model problem. We obtain the first-order
series solution for the governing equations of the model
problem and achieved the first-order solution with high
accuracy. For the accuracy and validity of OAFM, results
are compared with numerical method. For comparison, it
is concluded that the OAFM is very accurate and simple
in application. OAFM is very easy in applicable to high
nonlinear initial and boundary value problems even if
the nonlinear initial/boundary value problem does not
contain the small parameter. In comparison with other
analytical methods, OAFM is very easy in applicability
and provides us good results of more complex nonlinear
initial/boundary value problems. OAFM contains the opti-
mal auxiliary constants through which we can control the
convergence as OAFM contains the auxiliary functions
D1,D2,D3, E4 in which the optimal constants Em, En, Er ,
Ep and the control convergence parameters exist to play
an important role to get the convergent solution which is
obtained rigorously. The computational work in OAFM
is less when compared to other methods, and even a low
specification computer can do the computational work
easily. The less computational work and rapid convergent
solution at just the first iteration enable us to implement
this efficient method in our future work for more complex
models arising from real-world problems. The numerical
method required maximum space and time as compared
to OAFM is the short method and is very rapidly conver-
gent. Numerical methods required to have large
computational work and required the latest computer for
computational work.

Based on the results and discussion, some points are
presented here:

(i) The motion of the plates represented by squeezing
flow is indicated by the squeeze number S. When
S > 0, the plates are moving separately, but when
S < 0, the plates are moving collectively. Positive
and negative squeezing values have distinct effects
on the velocity profile. The velocity rises when
the absolute value of the squeeze number is 0.5,
but drops when it is >0.5

(ii) With a large number of Pr , the temperature distri-
bution obviously decreases, whereas with a small
number of Pr , it grows. Fluids with a low Prandtl
number have a higher thermal diffusivity than
fluids with a high Prandtl number. A high Pr
causes the thermal boundary layer to decrease as
a result. The impact is much more noticeable for
a small number of Pr because the thermal bound-
ary layer thickness is so high

(iii) The increase in magnetic field M reduces the
velocity profile, since the magnetic field is applied
perpendicular to the flow, and hence, the con-
ducting fluid particles feel the opposite force of
magnetic field and hence reduce the velocity
profile

(iv) The increase in volume fraction ϕ decreases the
velocity profile whereas increases the temperature
profile

(v) An increase in s and δcauses to decrease the
temperature profile

(vi) The skin friction coefficient and the Nusselt
number are inversely proportional to S

(vii) The effect of increasing values of Ec is to decrease
the skin friction coefficient, Cf , and the heat trans-
fer rate, ssNux

(viii) The increasing value ofφ increases the skin friction
coefficient and decreases the heat transfer rate

Abbreviations

a, b, c: ConstantseΒ: Magnetic field ðNmA−1Þ
C: Fluid concentration
cp: Specific heat ðJ/kgKÞ
Cf : Skin friction coefficient
DB: Brownian diffusion of nanofluids
DT : Thermophoretic diffusion of nanofluids
~Ε: Electric field intensity ðNC−1Þ
F
_

1, F
_

2:
Homotopic functions

h: Distance between the plates
Jw: Mass flux
k: Thermal conductivity (Wm−1K−1)
Kr: Rotation parameter
k: The boundary parameter
M: Magnetic parameter
m: Hall parameter
ne: Number density of electron
Nb: Brownian motion
Nt: Thermophoretic parameter
Νu: Nusselt number
O: Origen
P: Fluid pressure ðPaÞ
Pr: Prandtl number
Qw: Heat flux ðWm−2Þ

Table 6: Comparison of skin friction and Nusselt numbers for
various values of φ.

φ Cf Nux
0.10 -1.214655 0.045236

0.20 -1.284562 0.041256

0.30 -1.2954632 0.031256

0.40 -2.59632 0.021548
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qr : Radioactive heat flux ðJÞ
Re: Viscosity parameter
Rd: Radiation parameter
Rex : Local Reynolds number
S: Cauchy stress tensor
Sc: Schmidt number
Sh: Sherwood number
te: Flow time ðsÞ
T : Fluid temperature ðKÞ
u, vw: Velocities components ðms−1Þ
uw: Stretching velocity ðms−1Þ
x, y, z: Coordinates
X,Y : Topological space

Greek Letters:

α: Thermal diffusivity ðm2s−1Þ
η: Similarity variable
κ
_
: Vertex viscosity ðmPaÞ

κm: Constants where m = 1, 2, ::
μ: Dynamic viscosity ðmPaÞ
υ: Kinematic coefficient of viscosity
ρf : Base fluid density ðKgm−3Þ
ρb: Density of the particles ðKgm−3Þ
σnf : Electrical conductivity of nanofluid ðSm−1Þ
τ∗: Ratio of nanoparticles and heat capacity
φ: Stefan Boltzmann constant
h: Assisting parameter
Φ: Dimensional concentration profile
ωe: Oscillating frequency of the electron ðS−1Þ
Ω: Angular velocity ðms−1Þ.
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