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In this work, the optimal homotopy asymptotic method (OHAM) has been used to find approximate solutions to the nonlinear
fractional-order Kawahara and modified Kawahara equations. The method convergence is controlled by a flexible function known
as the auxiliary function. The values of the unknown arbitrary constants in the auxiliary function are computed using the Caputo
derivative fractional-order and the well-known approach of least squares. Fractional-order derivatives are taken in the Caputo
sense with numerical values in the closed interval ½0, 1�. The suggested method is directly applied to fractional-order Kawahara
and modified Kawahara equations, with no need for small or large parameter assumptions. The numerical results obtained by
the proposed method are compared to the new iterative method (NIM). Results reveal that the proposed method converges
faster to the exact solution than other methods in the literature.

1. Introduction

Fractional computation was established as an important
subject of mathematics in 1695. Fractional calculus ideas
have recently been successfully expanded to numerous sec-
tors, and academics have increasingly realized that fractional
calculus may well reflect many nonlocal occurrences in the
fields of natural science and architecture. Rheology, liquid
flow, dispersion diffusion transport, dynamic cycles in self-
compatible and porous materials, viscoelasticity, and optics
are some of the key areas of fractional calculation today.
Very few researchers have drawn on the successful use of
fractional systems in these fields to examine their mathemat-
ical approximation methods, since diagnostic frameworks
are usually difficult to obtain. A variety of real-world prob-
lems can be modeled using fractional-order differential
equations. These equations have many applications in fluid

mechanics, electromagnetic theory, electric grids, diffuse
transport, groundwater problems, biological sciences, etc.
[1–9]. The exact solution for nonlinear problems is very
hard to obtain, and an alternative way is to find the approx-
imate solution. Some familiar approximation methods are
used in the series of papers [9–21], etc. Similarly, we extend
the well-known optimal homotopy asymptotic method
(OHAM) to fractional-order Kawahara and modified Kawa-
hara equations.

The proposed approach was presented by Marinca and
Herisanu and applied to resolve nonlinear differential equa-
tions in the literature series [22–26]. Recently, Sarwar et al.
extended the idea of OHAM fractional-order partial differ-
ential equations and used them for different problems hav-
ing fractional-order derivatives [27, 28]. Nawaz et al.
applied the suggested approach to the fractional-order
Zakharov-Kuznetsov equations [29]. Likewise, Zada et al.
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applied the proposed approach to various fractional PDEs in
the series of articles [30, 31]. In this article, the application of
OHAM is extended to the modified Kawahara and Kawa-
hara equations together with initial conditions:

∂αϒ ξ, τð Þ
∂τα

+ϒ ξ, τð Þ ∂ϒ ξ, τð Þ
∂ξ

+ϒ ξ, τð Þ − ∂5ϒ ξ, τð Þ
∂ξ5

= 0, 0 < α ≤ 1,

ϒ ξ, 0ð Þ = 105
169 sec h4 ξ

2
ffiffiffiffiffi
13

p
� �

,

ð1Þ

∂αϒ ξ, τð Þ
∂τα

+ϒ 2 ξ, τð Þ ∂ϒ ξ, τð Þ
∂ξ

+ ρ
∂3ϒ ξ, τð Þ

∂ξ3

+ μ
∂5ϒ ξ, τð Þ

∂ξ5
= 0, 0 < α ≤ 1,

ϒ ξ, 0ð Þ = 3ρffiffiffiffiffiffiffiffiffiffiffi
−10μp sec h2 kξð Þ, k = 1

2

ffiffiffiffiffiffi
−ρ
2μ

r
:

ð2Þ

Here, ρ and μ are constants. Equations (1) and (2) have
become the subject of active and wide research topics in
recent times [32–34].

2. Preliminaries

Definition 1. The Riemann-Liouville fractional integral oper-
ator of an order α ≥ 0 of a function G ∈ Cμ, μ ≥ −1 is pre-
sented by

IαaG ξð Þ = 1
Γ αð Þ

ðξ
a
ξ − μð Þα−1G μð Þdμ, α > 0, ξ > 0,

I0aG ξð Þ =G ξð Þ:

8><
>: ð3Þ

Definition 2. The fractional derivative GðξÞ according to
Caputo is presented by

Dα
aG ξð Þ = Im−α

a DmG ξð Þ = 1
Γ m − að Þ

ðξ
a
ξ − μð Þm−α−1Gm μð Þdμ,

m − 1 < α ≤m,m ∈N , ξ > 0,G ∈ Cm
−1:

8><
>:

ð4Þ

Definition 3. If m − 1 < α ≤m,m ∈N , and G ∈ Cm
μ , μ ≥ −1,

then Dα
aI

α
aGðξÞ = GðξÞ and Dα

aI
α
aGðξÞ =GðξÞ − ∑m−1

k=0 G
ðkÞðξ −

aÞ/k!, ξ > 0:

The properties of operator Iα are found in [3, 11]. We intro-
duce the subsequent.

For G ∈ Cm
μ , α, β > 0, μ ≥ −1, and γ ≥ −1,

(1) IαaGðξÞ exist for almost every ξ ∈ ½a, b�
(2) IαaI

β
aGðξÞ = Iα+βa GðξÞ

(3) Iαa J
β
aGðξÞ = Iβa JαaGðξÞ

(4) Iαaðξ − aÞγ = ðΓðγ + 1Þ/Γðα + γ + 1ÞÞðξ − aÞα+γ

3. OHAM Methodology to Fractional-Order
PDEs [27, 28]

To extend the basic theory of OHAM for fractional-order
PDEs, we assume that the subsequent general fractional dif-
ferential system

∂αϒ ξ, τð Þ
∂τα

= A ϒ ξ, τð Þ + F ξ, τð Þα > 0ð , ð5Þ

with initial condition

Dα−κ
0 ϒ ξ, 0ð Þ = hκ rð Þ, κ = 0, 1, 2,⋯, n − 1ð Þ,Dα−n

0 ϒ ξ, 0ð Þ = 0, n = α½ �,
Dκ
0ϒ ξ, 0ð Þ = gκ rð Þ, κ = 0, 1, 2,⋯, n − 1ð Þ,Dn

0ϒ ξ, 0ð Þ = 0, n = α½ �:
ð6Þ

In the above equation, ∂α/∂τα represents the Caputo
fractional derivative operator, A stands for the differential
operator, and ϒðξ, τÞ represents an unknown function.
Fðξ, τÞ is a function that serves as an analytical function.

The homotopy using OHAM for equation (5) is ϕðξ,
τ ; pÞ: Ω × ½0, 1�⟶ R which is satisfied:

1 − pð Þ ∂αϕ ξ, τð Þ
∂τα

− F ξ, τð Þ
� �

−H ξ, pð Þ

� ∂αϕ ξ, τð Þ
∂τα

− A ϕ ξ, τð Þð Þð + F ξ, τð Þ
� �

= 0:
ð7Þ

Hence, p ∈ ½0, 1� which is an embedding parameter and
Hðξ, τÞ shows the auxiliary function such that

H ξ, τð Þ ≠ 0 for p ≠ 0 andH ξ, 0ð Þ = 0: ð8Þ

Remark 4. The approximate solution ϕðξ, τÞ approaches to
the closed solution when the numerical values of p varies
for 0 to 1 in the closed interval ½0, 1�. The convergence
of the OHAM purely depends on the auxiliary function.

The auxiliary function Hðξ, pÞ is set out below:

H ξ, pð Þ = pk1 ξ, Cið Þ + p2k2 ξ, Cið Þ + p3k3 ξ, Cið Þ+⋯+pmkm ξ, Cið Þ:
ð9Þ

In equation (9), Ci, i = 1, 2,⋯, convergence control
parameters kiðξÞ, i = 1, 2,⋯, is a function of ξ.

By extending ϕðξ, τ ; p, CiÞ in Taylor’s series about p, one
can obtain

ϕ ξ, τ ; Cið Þ =ϒ 0 ξ, τð Þ + 〠
m

k=1
ϒ k ξ, τ ; Cið Þpk, i = 1, 2, 3,⋯:

ð10Þ
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Putting p = 1, in the above equation, we have

ϒ ξ, τ ; Cið Þ =ϒ 0 ξ, τð Þ + 〠
∞

k=1
ϒ k ξ, τð Þ ; CiÞ, i = 1, 2, 3,⋯:

ð11Þ

By substituting equation (10) in equation (7) and equat-
ing the coefficient of the same powers of p, we acquire the
series of problems:

p0 :
∂αϒ 0 ξ, τð Þ

∂τα
− F = 0,

p1 :
∂αϒ 1 ξ, τ, C1ð Þ

∂τα
− 1 + C1ð Þ ∂

αϒ 0 ξ, τð Þ
∂τα

+ 1 + C1ð ÞF + C1A ϒ 0 ξ, τð Þð Þ = 0,

p2 :
∂αϒ 2 ξ, τ, C1, C2ð Þ

∂τα
− 1 + C1ð Þ ∂

αϒ 1 ξ, τ, C1ð Þ
∂τα

− C2
∂αϒ 0 ξ, τð Þ

∂τα
+ C1A ϒ 1 ξ, τ, C1ð Þð Þ + C2 F + A ϒ 0 ξ, τð Þð Þð = 0⋯ :

ð12Þ

The above problems contain fractional-order derivatives.
So, we apply the inverse of the operator Iα on both sides of
the above problems:

ϒ 0 ξ, τð Þ = Iα F½ �,

ϒ 1 ξ, τ ; C1ð Þ = Iα 1 + C1ð Þ ∂
αϒ 0 ξ, τð Þ
∂τα

− 1 + C1ð ÞF − C1A ϒ 0 ξ, τð Þð Þ
� �

,

ϒ 2 ξ, τ ; C1, C2ð Þ = Iα 1 + C1ð Þ ∂
αϒ 1 ξ, τ ; C1ð Þ

∂τα
+ C2

∂αϒ 0 ξ, τð Þ
∂τα

�

− C1A ϒ 1 ξ, τ ; C1ð Þð Þ − C2 F + A ϒ 0 ξ, τð Þð Þð Þ
�
⋯ :

ð13Þ

By using these solutions in equation (11), we obtain the
approximate solution:

~ϒ ξ, τ ; Cið Þ =ϒ 0 ξ, τð Þ +ϒ 1 ξ, τ ; C1ð Þ +ϒ 2 ξ, τ ; C1, C2ð Þ+⋯:

ð14Þ

The residual Rðξ, τ ; CiÞ is acquired by using equation
(14) into equation (5).

C1, C2,⋯ can be found by using either the Ritz method,
the least squared method, the collocation method, or Galer-
kin’s method. The least-square approach is used here. Here,
we introduce the functional

χ Cið Þ =
ðt
0

ð
Ω

R2 ξ, τ ; Cið Þdξdτ, ð15Þ

then calculate the optimal values for auxiliary constants Ci
by solving the following equation system:

∂χ
∂C1

= ∂χ
∂C2

=⋯ = ∂χ
∂Cm

= 0: ð16Þ

3.1. Convergence Theorem. If the series (11) converge to

ϒðξ, τÞ, where ϒ kðξ, τÞ ∈ LðR+Þ is generated by the zero-
order system and the K-order deformation, then ϒðξ, τÞ
is the exact solution of (5).

Proof. The following series

〠
∞

k=1
ϒ i,k ξ, τ ; C1, C2,⋯, Ckð Þ ð17Þ

converges and is presented by

ψi ξ, τð Þ = 〠
∞

k=1
ϒ i,k ξ, τ ; C1, C2,⋯, Ckð Þ, ð18Þ

which satisfies the following:

lim
k⟶∞

ϒ i,k ξ, τ ; C1, C2,⋯, Ckð Þ = 0: ð19Þ

Indeed, the subsequent equation is fulfilled:

ϒ i,1 ξ, τ ; C1ð Þ + 〠
n

k=2
ϒ i,k ξ, τ ; C

!
k

� �
− 〠

n

k=2
ϒ i,k−1

� ξ, τ ; C
!
k−1

� �
=ϒ i,2 ξ, τ ; C

!
2

� �
−ϒ i,1 ξ, τ ; C1ð Þ+⋯+ϒ i,n ξ, τ ; C

!
n

� �
−ϒ i,n−1 ξ, τ ; C

!
n−1

� �
=ϒ i,n ξ, τ ; C

!
n

� �
:

ð20Þ

Now, we have

Li,1 ϒ i,1 ξ, τ ; C1ð Þð + 〠
∞

k=2
L1 ϒ i,k ξ, τ ; C

!
k

� �� �

− 〠
∞

k=2
Li ϒ i,k−1 ξ, τ ; C

!
k−1

� �� �

= Li ϒ i,1 ξ, τ ; C1ð Þð Þ + 〠
∞

k=2
Li ϒ i,k ξ, τ ; C

!
k

� �� �

− 〠
∞

k=2
Li ϒ i,k−1 ξ, τ ; C

!
k−1

� �� �
= 0,

ð21Þ

which satisfies

Li,1 ϒ i,1 ξ, τ ; C1ð Þð + Li 〠
∞

k=2
ϒ i,k ξ, τ ; C

!
k

� �� �

− Li 〠
∞

k=2
ϒ i,k−1 ξ, τ ; C

!
k−1

� �� �

= 〠
∞

k=2
Cm Li ϒ i,k−m ξ, τ ; C

!
k−m

� �� ��h

+Ni,k−m ϒ i,k−1 ξ, τ ; Ck−1ð Þð Þ
i
+ gi ξ, τð Þ = 0:

ð22Þ
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Now, if Cm,m = 1, 2, 3,⋯, is correctly selected, then the
equation leading to

Li ϒ i ξ, τð Þð + A = 0 ð23Þ

is the exact solution.

4. Main Results

We test our adopted procedure OHAM for finding the
approximate solution of the fractional-order Kawahara
equation. For most of the computational work, we used
MathType and Mathematica 10.

4.1. Numerical Solution of Fractional Kawahara Equation.
First, we assume that the time-fractional Kawahara equation
is given in [35]:

∂αϒ ξ, τð Þ
∂τα

+ϒ ξ, τð Þ ∂ϒ ξ, τð Þ
∂ξ

+ ∂3ϒ ξ, τð Þ
∂ξ3

−
∂5ϒ ξ, τð Þ

∂ξ5
= 0, 0 < α ≤ 1:

ð24Þ

Subject to I.C.,

ϒ ξ, 0ð Þ = 105
169 sech4 ξ

2
ffiffiffiffiffi
13

p
� �

: ð25Þ

For α = 1, an exact solution for equation (24) is found by
[35] as

ϒ ξ, τð Þ = 105
169 sech4 1

2
ffiffiffiffiffi
13

p ξ −
36τ
169

� �� �
: ð26Þ

Recall the OHAM preparation given in Section 3, we
obtain the subsequent problems:

Zero-order problem:

∂αϒ 0 ξ, τð Þ
∂τα

= 0,ϒ 0 ξ, τð Þ = 105
169 sech4 ξ

2
ffiffiffiffiffi
13

p
� �

: ð27Þ

First-order problem:

∂αϒ 1 ξ, τð Þ
∂τα

= ∂αϒ 0 ξ, τð Þ
∂τα

+ C1
∂αϒ 0 ξ, τð Þ

∂τα
− C1ϒ 0

∂ϒ 0 ξ, τð Þ
∂ξ

+ C1
∂3ϒ 0 ξ, τð Þ

∂ξ3
− C1

∂5ϒ 0 ξ, τð Þ
∂ξ5

:

ð28Þ

Table 1: Numerical values of C1, C2 for time-fractional Kawahara
equation for several values of α.

α C1 C2

1.0 ‐0:9999983031706354 0:000002:417505787703306
2
3 ‐0:9999609966319342 0:000030849221963805824

Table 2: Numerical values of C1 for time-fractional modified
Kawahara equations for several values of α.

α C1

1.0 ‐0:4647234979611254
2
3 ‐0:9999609966319342

Table 3: Comparison of second-order OHAM solution with third-
order NIM solution for time-fractional Kawahara equation for
different values of α.

ξ τ
OHAM
α = 2/3

OHAM
α = 1

Exact
α = 1

-5

0.02 0.252877 0.253985 0.253985

0.04 0.252017 0.253625 0.253625

0.06 0.251298 0.253265 0.253265

0.08 0.250657 0.252905 0.252905

0.1 0.250069 0.252546 0.252546

0

0.02 0.621292 0.621301 0.621301

0.04 0.621277 0.6213 0.6213

0.06 0.621259 0.621298 0.621298

0.08 0.621239 0.621295 0.621295

0.1 0.621217 0.621291 0.621291

5

0.02 0.255821 0.254707 0.254707

0.04 0.256691 0.255068 0.255068

0.06 0.257422 0.255429 0.255429

0.08 0.258076 0.255791 0.255791

0.1 0.258678 0.256153 0.256153

Table 4: Comparison absolute errors of 2nd-order OHAM solution
with 3rd-order NIM solution for time-fractional Kawahara
equations for different values of α.

ξ τ
Residual
α = 0:5

NIM [35]
α = 1

OHAM
α = 1

-5

0.02 −1:31504 × 10−6 2:27500 × 10−10 8:04633 × 10−10

0.04 −3:18365 × 10−6 1:81933 × 10−9 1:20722 × 10−9

0.06 −5:04947 × 10−6 6:13795 × 10−9 8:08547 × 10−10

0.08 −6:91298 × 10−6 1:45438 × 10−8 7:88584 × 10−10

0.1 −8:77447 × 10−6 2:83953 × 10−8 3:97934 × 10−9

0

0.02 −8:08613 × 10−8 1:76636 × 10−13 1:29552 × 10−12

0.04 −2:14003 × 10−7 2:82618 × 10−12 3:06177 × 10−12

0.06 −3:84142 × 10−7 1:43068 × 10−11 1:05937 × 10−12

0.08 −5:84492 × 10−7 4:52161 × 10−11 2:1665 × 10−11

0.1 −8:11039 × 10−7 1:10391 × 10−10 7:35924 × 10−11

5
0.02 1:33389 × 10−6 2:27670 × 10−10 8:05429 × 10−10

0.04 3:22731 × 10−6 1:82204 × 10−9 1:20837 × 10−9

0.06 5:12378 × 10−6 6:15166 × 10−9 8:03524 × 10−10

0.08 7:02284 × 10−6 1:45871 × 10−8 8:16471 × 10−10

0.1 8:92419 × 10−6 2:85011 × 10−8 4:061 × 10−9
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Second-order problem:

∂αϒ 2 ξ, τð Þ
∂τα

= C2∂
αϒ 0 ξ, τð Þ
∂τα

+ ∂αϒ 0 ξ, τð Þ
∂τα

+ C1
∂αϒ 1 ξ, τð Þ

∂τα

+ C2ϒ 0 ξ, τð Þ ∂ϒ 0 ξ, τð Þ
∂x

ξ + C1ϒ 0 ξ, τð Þ ∂ϒ 0 ξ, τð Þ
∂ξ

+ C1ϒ 0 ξ, τð Þ ∂ϒ 1 ξ, τð Þ
∂ξ

+ C2
∂3ϒ 0 ξ, τð Þ

∂ξ3

+ C1
∂3ϒ 1 ξ, τð Þ

∂ξ3
− C2

∂5ϒ 1 ξ, τð Þ
∂ξ5

:

ð29Þ

Apply the inverse operator Iα, the solution of the above
problems is given as follows:

ϒ 0 ξ, τð Þ = 105
169 sech4 ξ

2
ffiffiffiffiffi
13

p
� �

,

ϒ 1 ξ, τ, C1ð Þ =
−7560C1τ

α sech4 ξ/2
ffiffiffiffiffi
13

p� �
tan ξ/2

ffiffiffiffiffi
13

p� �
28561

ffiffiffiffiffi
13

p
Γ 1 + αð Þ

,

ϒ 2 ξ, τ, C1, C2ð Þ = 1
62748517Γ 1 + αð Þ

� 1890e−ξ/
ffiffiffiffi
13

p
τα −169

ffiffiffiffiffi
13

p
C1 + C2

1 + C2
	 


−1 + e2ξ/
ffiffiffiffi
13

p� �� ��

+ 923−2αC2
1 1 − 3eξ/

ffiffiffiffi
13

p
+ e2ξ/

ffiffiffiffi
13

p	 
 ffiffiffi
π

p
ταffiffiffiffiffi

13
p

Γ 1 + αð Þ

!
sech6 ξ

2
ffiffiffiffiffi
13

p
� �

Þ:

ð30Þ

The second-order OHAM solution is presented as follows:

~ϒ ξ, τ, Cið Þ =ϒ 0 ξ, τð Þ +ϒ 1 ξ, τ, C1ð Þ +ϒ 2 ξ, τ, C1, C2ð Þ:
ð31Þ

For α = 1, second-order OHAM solution for Kawahara
equation is

Table 5: Comparison of 1st-order OHAM solution with 3rd-order NIM solution for time-fractional modified Kawahara equations For
different values of α.

ξ τ Exact solution OHAM solution
Absolute error NIM for [35]

α = 1 Absolute error OHAM for α = 1

-5

0.02 9:474889415 × 10−4 9:474984314 × 10−4 9:48992 × 10−9 9:48992 × 10−9

0.04 9:474794138 × 10−4 9:474984314 × 10−4 1:90176 × 10−8 1:90176 × 10−8

0.06 9:474698483 × 10−4 9:474984314 × 10−4 2:8583 × 10−8 2:8583 × 10−8

0.08 9:474602454 × 10−4 9:474984314 × 10−4 3:81862 × 10−8 3:81862 × 10−8

0.1 9:474506042 × 10−4 9:474984314 × 10−4 4:78271 × 10−8 4:78271 × 10−8

0

0.02 9:486832790 × 10−4 9:486832980 × 10−4 1:89737 × 10−11 1:89737 × 10−11

0.04 9:486832221 × 10−4 9:486832980 × 10−4 7:58947 × 10−11 7:58947 × 10−11

0.06 9:486831272 × 10−4 9:486832980 × 10−4 1:70763 × 10−10 1:70763 × 10−10

0.08 9:486829944 × 10−4 9:486832980 × 10−4 3:03579 × 10−10 3:03579 × 10−10

0.1 9:486828237 × 10−4 9:486832980 × 10−4 4:74342 × 10−10 4:74342 × 10−10

5

0.02 9:475078835 × 10−4 9:474984314 × 10−4 9:45216 × 10−9 9:45216 × 10−9

0.04 9:475172979 × 10−4 9:474984314 × 10−4 1:88666 × 10−8 1:88666 × 10−8

0.06 9:475266744 × 10−4 9:474984314 × 10−4 2:82432 × 10−8 2:82432 × 10−8

0.08 9:475360132 × 10−4 9:474984314 × 10−4 3:75821 × 10−8 3:75821 × 10−8

0.1 9:475453144 × 10−4 9:474984314 × 10−4 4:68832 × 10−8 4:68832 × 10−8

0.6

0.4

0.2

0.0
−20

−10
0

10

20 0.0

0.5

1.0

1.5

2.0

Figure 1: 3D surface obtained by OHAM solution for fractional
Kawahara equation at α = 0:5.
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For α = 2/3, second-order OHAM solution for Kawahara
equation is

4.2. Numerical Solution of Fractional Modified Kawahara
Equation. Assume the following time-fractional modified
Kawahara system presented by

∂αϒ ξ, τð Þ
∂τα

+ϒ 2 ξ, τð Þ ∂ϒ ξ, τð Þ
∂ξ

+ p
∂3ϒ ξ, τð Þ

∂ξ3
+ q

∂5ϒ ξ, τð Þ
∂ξ5

= 0, 0 < α ≤ 1,

ð34Þ

with I.C.,

ϒ ξ, 0ð Þ = 3ρffiffiffiffiffiffiffiffiffiffiffi
−10μp sech2 kξð Þ, k = 1

2

ffiffiffiffiffiffi
−ρ
2μ

r
: ð35Þ

When α = 1, the exact solution is given by [35] as

ϒ ξ, τð Þ = 3ρffiffiffiffiffiffiffiffiffiffiffi
−10μp sech2 k ξ − ψtðð Þ, ψ = 25μ − 4ρ2

25μ : ð36Þ

Following the OHAM procedure, we have the following.

Zero-order problem:

∂αϒ 0 ξ, τð Þ
∂τα

= 0,ϒ 0 ξ, 0ð Þ = 3ρffiffiffiffiffiffiffiffiffiffiffi
−10μp sech2 kξð Þ, k = 1

2

ffiffiffiffiffiffi
−ρ
2μ

r
:

ð37Þ

First-order problem:

∂αϒ 1 ξ, τð Þ
∂τα

= ∂αϒ 0 ξ, τð Þ
∂τα

+ C1
∂αϒ 0 ξ, τð Þ

∂τα
− C1ϒ 0

∂ϒ 0 ξ, τð Þ
∂ξ

+ C1
∂3ϒ 0 ξ, τð Þ

∂ξ3
− C1

∂5ϒ 0 ξ, τð Þ
∂ξ5

:

ð38Þ

Apply the inverse operator Iα, the solution of the above
problems is given as follows:

The 1st-order OHAM solution is given by the following
expression:

~ϒ ξ, τ, Cið Þ =ϒ 0 ξ, τð Þ +ϒ 1 ξ, τ, C1ð Þ: ð40Þ

5. Results and Discussion

We implemented OHAM to provide approximate numerical
solutions to fractional and modified Kawahara equations.

Numerical values are tabulated for the auxiliary constants
in Tables 1 and 2 for Kawahara and modified Kawahara
equations at various values of α: Table 3 gives the estimation
of the second-order OHAM solution and the third-order
NIM solution for the Kawahara fractional equation.
Table 4 compares the absolute errors of the second-order
OHAM solution for various α values. Table 4 presents the
values of the first-order OHAM solution and the third-
order NIM solution for the various values of α. Table 5

~ϒ ξ, τð Þ =
105 sech4 ξ/2

ffiffiffiffiffi
13

p� �
371293 + 72τ −9C1

2τ −4 + 5 sech2
		

ξ/2
ffiffiffiffiffi
13

p� �
− 169

ffiffiffiffiffi
13

p
C1 2 + C1ð Þ + C2ð Þ tanh ξ/2

ffiffiffiffiffi
13

p� �� �
62748517 :

ð32Þ

~ϒ ξ, τð Þ =
105 sech4 ξ/2

ffiffiffiffiffi
13

p� �
371293 + 72τ2/3 −18C1

2τ2/3 −4 + 5 sech2 ξ/2
ffiffiffiffiffi
13

p� �� �
/Γ 7/3ð Þ − 169

ffiffiffiffiffi
13

p
C1 2 + C2ð Þð tanh ξ/2

ffiffiffiffiffi
13

p� �
/Γ 5/3ð Þ

� �� �
62748517 :

ð33Þ

ϒ 0 ξ, τð Þ = 3ρffiffiffiffiffiffiffiffiffiffiffi
−10μp sech2 1

2

ffiffiffiffiffiffi
−ρ
2μ

r� �
ξ

� �
,

ϒ 1 ξ, τ, C1ð Þ =
3C1ρ7/2τα sech5

ffiffiffi
ρ

p
ξ/2

ffiffiffi
5

p ffiffiffi
μ

p� �
−59 sin ffiffiffi

ρ
p

ξ/2
ffiffiffi
5

p ffiffiffi
μ

p� �
+ sin ffiffiffi

ρ
p

ξ/2
ffiffiffi
5

p ffiffiffi
μ

p� �� �
tan ξ/2

ffiffiffiffiffi
13

p� �
500 ffiffiffiffiffiffi−μp

μ3/2
ffiffiffi
2

p
αΓα

� :

ð39Þ
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compares first-order OHAM solution with third-order NIM
solution for time-fractional modified Kawahara equations
for different values of α.

Figures 1–3 depict the 3D surfaces obtained by second-
order OHAM as well as the accurate solutions to fractional
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Figure 2: 3D surface obtained by OHAM solution for fractional
Kawahara equation at α = 1.
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Figure 3: 3D surface obtained by exact solution for fractional
Kawahara equation at α = 1.
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Figure 4: The curves show the comparison between exact solution
and approximate solution for different values of α at τ = 0:5 for
Kawahara equation.
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Figure 5: Residual obtained by OHAM for α = 0:5 at τ = 0:5, for
Kawahara equation.
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Figure 6: 3D plot of OHAM solution for fractional modified
Kawahara equation at α = 0:5.
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Figure 7: 3D surface obtained by OHAM solution for fractional
modified Kawahara equation at α = 1.
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Kawahara equation at α = 0:5 and 1. Figure 4 shows the
residual for α = 0:5, whereas Figure 5 shows the 2D surface
of the second-order OHAM solution for various values of
α. Figures 6–8 show the 3D plots for the first-order OHAM
solution and exact solution for the fractional modified
Kawahara equation at α = 0:5 and 1. Figure 9 depicts a
two-dimensional graph of the first-order OHAM solution
for different values of α. The residual for α = 0:5 is shown
in Figure 10.

The results obtained by the second-order OHAM solu-
tion for the Kawahara fractional equation agree with both
the closed and the NIM solution. Similarly, for fractional
modified Kawahara equation, the results achieved by the
first-order OHAM solutions are exactly the same as for the
third-order NIM solutions.

6. Conclusions

We observe that OHAM converges rapidly towards the closed
solution with a lower sequence of approximation of fractional
orders of the Kawahara equations and modified Kawahara
equations based on the calculated results. The results achieved
with the proposed approach are highly encouraging compared
to the new iterative method (NIM). This proposed approach
is capable of providing the greatest accuracy within the lowest
approximation sequence. This approach does not require
choices between small and large parameter assumptions in
problems. The results are analyzed and explained with the help
of graphs by considering different values of parameters. Results
reveal that as the value of fractional-order derivatives
approaches to 1, the approximate solution converges to the
exact solution. The convergence of this approach is indepen-
dent of initial assumptions. The precision of the proposed
approach can be improved by assuming high approximations,
and therefore, it may be highly attractive for researchers to
use our approach to solve fractional-order systems emerging
in the science of technology.
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