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Swarm intelligence algorithm is an emerging evolutionary computing technology, which has become the focus of more and more
researchers. It has a very special connection with artificial life, especially evolutionary strategies and genetic algorithms. The
swarm intelligence algorithms you see include genetic algorithm, particle swarm optimization algorithm, and ant colony
algorithm. This part of the content has been supplemented in the article. Evolutionary computing is a group-oriented random
search technology and method produced by simulating the evolutionary process of organisms in nature. Evolutionary
computing is based on natural selection strategy: survival of the fittest, elimination of the unfit, and individuals with large
fitness values have a higher survival probability than individuals with small fitness values. The purpose of this paper is to study
the structure optimization of carbon nanotubes based on swarm intelligence algorithm and evolutionary computation. It is
expected to optimize the structure of carbon nanotube materials with the help of intelligent evolution algorithm, so that it can
be used in more fields. In this paper, the preparation process and principle of carbon nanotube-based gas sensors are studied,
and the preparation process of the side-heated gas sensor is selected. This paper focuses on the strain sensing performance of
carbon nanotubes, analyzes various parameters that characterize the sensing performance, and proposes feasible technical
routes for improvement, optimization and improvement. The experimental results in this paper show that when different
proportions of oxides are added, the tensile strength of carbon nanotube materials is increased by about 8%, and the elastic
modulus is increased by up to 40%. After adding CNFs, the tensile strength increased by up to 18%, and the elastic modulus
increased by up to 50%.

1. Introduction

With the continuous advancement of science and technol-
ogy, polymer materials are more and more widely used in
daily life, and with the high requirements for the perfor-
mance of polymer materials, this problem was not solved
until the emergence of nanopolymers. Polymer materials
are materials based on polymer compounds, materials
composed of compounds with relatively high molecular
weight, including rubber, plastics, fibers, and polymer-
based composite materials. Polymers are the form of life.
In fact, every advance of human society is closely related to
the development of new materials. In the 21st century, with
the continuous development of science and technology, the

understanding of human beings is constantly expanding,
and the exploration of nanomaterials has promoted the
development of human beings in a deeper direction. Since
the end of World War II, optimization computing has been
widely introduced and used in the scientific community.
Since optimization algorithms already have the advantage
of effectively dealing with complex problems that are diffi-
cult to solve by traditional methods, these algorithms and
designs are sought after as soon as they are published. The
optimization algorithm can use the mathematical modeling
method to convert the actual problem into an optimization
problem and convert the optimization problem into a stan-
dard optimization model. It has a simple structure and
flexible calculation and can solve many complex problems.
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How to combine the swarm intelligence algorithm with evo-
lutionary computing and carbon nanotube structure optimi-
zation is the problem to be explored in this paper.

With the increase of function dimension, traditional
optimization methods cannot solve complex function opti-
mization problems well. The evolutionary algorithm that
simulates the biological evolution process can get a set of
solutions in one run. This main advantage is introduced into
the optimization problem, which effectively solves many
complex optimization problems. The swarm intelligence
optimization algorithm has good heuristics, parallelism,
and distribution and can solve complex function optimiza-
tion problems well, save resources, and improve efficiency.

Based on the work of genetic operator impact analysis,
this paper proposes GPs based on edit distance 1 and 2
population diversity control, respectively. The influence of
genetic operators in GP on the population and its diversity
is analyzed and compared, and the correlation between pop-
ulation diversity and individual fitness is explored.

2. Related Work

With the development of the times, more and more people
conduct research on optimization calculation. Bhattacharjee
and Sarmah attempt algorithmic advantage to solve combi-
natorial problems. In the improved version of CSA, the local
randomized wandering repair operator is used. And in the
improved version of FA, variable distance shifts for local
search are applied. The firefly algorithm is proposed by
simulating the natural phenomenon of firefly swarming
activities in nature at night. In the swarming activities of
fireflies, each firefly communicates with its companions for
food and courtship by emitting fluorescein. The efficiency
of the proposed algorithm is demonstrated through experi-
ments using a large number of benchmark problem
examples [1]. Ntouni et al. proposed a robust iterative
optimization algorithm based on standard particle swarm
optimization (PSO) techniques called acceleration-assisted
PSO (A-APSO). He implemented the A-APSO algorithm
to evaluate the detector weights. The results show that the
error performance is better than the weight values evaluated
by the PSO algorithm when A-APSO weights are used [2].
Gao et al. proposed a protein structure prediction method.
He used three different structural evolution methods, includ-
ing an improved particle swarm optimization (PSO) algo-
rithm, random perturbation, and fragment replacement, to
update the protein structure while keeping the secondary
structure unchanged. The high success rate and the accuracy
of the results demonstrate the reliability of the method [3].
Zhong et al. proposed to extend the multidimensional simi-
larity space region with group similarity and firstly used the
optimal value of the iterative clustering function as the clus-
tering quality index. In addition, he also proposed the fuzzy
high-order hybrid clustering (F-HOHC-SIS) algorithm,
which can effectively control the convergence speed and
reduce the computation time, while improving the anti-
interference capability [4]. In cloud environments, various
meta-heuristics can be used to solve scheduling problems
that fall under the NP-complete problem. Two of the funda-

mental goals of computer science are to discover algorithms
that can be shown to perform well and yield optimal or
suboptimal solutions. Heuristics, on the other hand, try to
provide one or all goals at a time. Tabaghchi proposes task
scheduling algorithms to reduce the idle time of virtual
machines while achieving load balancing and reducing the
running time. According to the results obtained, he reduced
the manufacturing time and energy consumption using the
proposed algorithm [5]. Son et al. proposed an optimization
method to design radar absorbing structures made of fiber-
reinforced plastic structures. In the optimized design, the
objective function is set to maximize the absorption band-
width of the X-band stealth. The results confirmed that
using the S-FSM not only the electromagnetic performance
of the samples could be detected but also the defects caused
by the manufacturing process [6]. Ahmadi et al. describe the
optimization of parameters involved in the production of
nanofibers. Single-walled carbon nanotubes were used to
improve the mechanical properties. The results show that
the concentration has a greater effect on the fiber diameter
than other parameters in PAN and PAN/CNT nanofibers.
However, excessive CNTs have a negative effect on elonga-
tion and modulus due to the aggregation of CNTs within
the nanofibers. The results showed that the PAN nanofibers
have an amorphous structure compared to the conventional
PAN nanofibers [7]. Lu et al. proposed carbon nanotube
bucky paper as a sensing layer in composite materials. Bucky
paper is a special kind of carbon nanotube thin layer, which
looks very similar to ordinary carbon fiber paper. People also
call it “Bucky paper.” It is made of only one-fifty thousandth
of a human hair, made of molecular weight. The experimen-
tal results show that the resistance temperature coefficient of
the bucky paper is related to the curing behavior of the resin,
and a critical value of the resistance temperature coefficient
is determined. In addition, by monitoring and optimizing
the curing parameters, the properties of the composites can
indeed be improved [8]. Although these theories have ana-
lyzed the optimization calculation and carbon nanotube
structure to a certain extent, the combination of the two is
insufficient and not practical.

3. Swarm Intelligence Algorithm and
Evolutionary Computation for Carbon
Nanotube Structure Optimization Methods

3.1. Overview of Carbon Nanotubes. Since the 1990s, carbon
nanotubes have been paid attention to by scientists. Unlike
other materials, carbon nanotubes have two different struc-
tures, so carbon nanotubes have many applications in many
fields. Carbon nanotubes have two structures, single-walled
carbon nanotubes, and multiwalled carbon nanotubes.
Single-walled carbon nanotubes can be regarded as hollow
cylinders made of a layer of graphite curled, while multi-
walled carbon nanotubes are composed of a group of coaxial
graphene. In the development of carbon nanometers, its
electrical properties have received extensive attention
[9, 10]. Nanomaterials are materials with nanoscale
structures, which can be divided into zero-dimensional
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nanomaterials and one-dimensional nanomaterials accord-
ing to their specific dimensions. It has been asserted that
when people can arrange and combine substances on a
very small scale, they will obtain various novel materials
[11, 12]. The change in properties caused by the ratio of the
number of atoms on the surface of the particle to the total
number of atoms increases sharply as the particle size
decreases. For example, when the particle diameter is
10 nm, the particle contains 4000 atoms, and the surface
atoms account for 40%; when the particle diameter is 1 nm,
the particle contains 30 atoms, and the surface atoms account
for 99%. Nanomaterials have attracted attention as a poten-
tial dielectric material, and most of the current research on
this material focuses on the effect of nanoceramic doping
on the dielectric properties of ceramics [13]. The electronic
properties of metallic carbon nanotubes are not sensitive to
the chemical environment, but its electrical conductivity is
very superior. It can be used as a wire, and its electrical
conductivity far exceeds that of copper, while the internal
electronic properties of semiconducting carbon nanotubes
are affected by the environment and other substances. In
the traditional manufacturing process, the oxide surface is
usually coated on the ceramic surface by chemical means.
This method can reduce the loss and increase the energy
storage density, but since the oxide is a nonferroelectric, the
ferroelectric properties of the ceramic itself will interfere
[14, 15]. In order to meet the use of nanomaterials in defense
and communication, we usually incorporate dopants into the
original materials to modify their defects. This method has a
good effect and has been widely used in the storage field. In
use, it is found that when the doping substances reach a cer-
tain limit, the dielectric and ferroelectric properties of
ceramics will exhibit relaxation ferroelectric phenomena
[16, 17]. The application of nanoceramic materials in capac-
itors requires a stable dielectric temperature. This is achieved
by adding rare earth elements. This method can inhibit the
growth of crystal grains and can also obtain dense and fine
powders. Figure 1 is an image of nanopowders. This material
can be fired into high-density ceramics [18, 19].

Until the end of the last century, the first International
Conference on Nanoscience and Technology was held in
the United States, which formally combined theoretical
research with contemporary science and technology, mark-
ing the official birth of nanotechnology [20]. When the size
of the material is at the nanometer level, the number of
atoms on the surface of the material will increase dramati-
cally, which will far exceed the number of ordinary mate-
rials, and the chemical activity of the material will be
greatly increased at this time. At the same time, nanomateri-
als are equal to or smaller than the wavelength of light wave,
de Broglie wavelength, and coherence length of supercon-
ducting state, and the periodic boundary of the material is
destroyed, resulting in “novel” optical, electrical, magnetic,
acoustic, and thermodynamic properties. In addition, nano-
materials also have quantum size effects and macroscopic
quantum tunneling effects. These unique characteristics pro-
vide conditions for the wide-scale application of nanomate-
rials. With the continuous and in-depth development of
theory and practice, nanostructures that are not called sys-

tems have been established. With the maturity of applica-
tion, the uniqueness of nanomaterials plays a pivotal role
in the fields of biotechnology and advanced manufacturing.
Figure 2 is a schematic diagram of common nanomaterials.

3.2. Overview of Optimization Calculations.With the contin-
uous development of the production economy, the scale of
computation involved is increasing, especially in the fields
of management and engineering. With the continuous
development of computer technology, and in order to
reduce the complexity of the calculation, the optimization
calculation came into being. In essence, optimization refers
to the use of certain rules to meet the needs of users.

Evolutionary computing is a stochastic optimization
method that simulates the genetic mechanism of the animal
kingdom. It has the idea of “survival of the fittest.” There-
fore, when using evolutionary thinking to solve target
optimization problems, genetic operations and natural
selection become its important components. Evolutionary
algorithms iteratively generate multiple solutions to each
problem during the optimization process and continue to
generate better solutions. The optimization function is called
the fitness function. Each solution is called an individual,
and all individuals in each generation form a group. The fit-
ness value of individuals in each group is different. With
iteration, better individuals are obtained through certain
evolutionary strategies, such as crossover and mutation.
When the algorithm terminates, the individual with the best
fitness value in the entire population is selected as the solu-
tion to the problem. Figure 3 shows the basic structure of the
optimization calculation.

Evolutionary algorithm is a random search method.
Compared with other enumeration techniques and heuristic
search techniques, the global optimal solution probability of
this problem is higher. The evaluation information of the
objective function is used to make it actionable and general.
It is concise in form, can be operated with massively parallel
computers, and can be easily combined with other methods.
At present, evolutionary computing mainly includes genetic
algorithm, evolutionary strategy, and evolutionary planning.
Genetic algorithm refers to the population of solution sets,
and the population is composed of several individuals
encoded by genes. In essence, genetic algorithm is an optimi-
zation algorithm, which is a random search algorithm that
uses the idea of natural selection and biological evolution
to search for the optimal solution in the search space.

min g að Þ a ∈Qjf g: ð1Þ

Formula (1) represents the function expression of the
function optimization model, where a represents the deci-
sion variable, gðaÞ represents the objective function, and Q
represents the spatial subset.

min g að Þ:st ∗ p að Þ ≥ 0: ð2Þ

Formula (2) represents the decision variable inequality.

Q = a ∈Ws p að Þ ≥ 0jf g: ð3Þ
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Formula (3) represents the feasible region of the deci-
sion solution, which is the set of all solutions in layman’s
terms.

In order to get the optimal solution for the region, we
need to optimize the model.

∀a ∈QI a ∈Ws
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠 a1 − a ∗ð Þ2

q
< a

����
� �

: ð4Þ

When formula (4) is satisfied gða ∗Þ ≤ gðaÞ, we say that
the model has an optimal solution. Figure 4 shows the basic
flow structure of the algorithm.

β = Tmax − Tmin
2p − 1 : ð5Þ

Formula (5) represents the precision of binary encoding,
among them, T represents the range of values, and p repre-
sents the length of the encoded symbol.

k = Tmin + 〠
p

o=1
wo ∗ 2o−2

 !
∗
Tmax − Tmin

2p − 1 : ð6Þ

Formula (6) represents the decoding function expression
when the encoded length is k.

f p =wp,
f p =wp+1 ⊕wp,

(
ð7Þ

wp = f p,
wp =wp+1 ⊕ f p:

(
ð8Þ

Formulas (7) and (8) represent binary codes under dif-
ferent Gray codes.

In the genetic algorithm, we usually use the fitness func-
tion to judge the situation of the individual. The fitness func-
tion satisfies the generality, so the calculation steps can be
reduced in the actual use process.

Fitness g að Þð Þ = g að Þ: ð9Þ

Formula (9) represents the functional expression of the
maximal optimization problem.

Fitness g að Þð Þ = −g að Þ: ð10Þ

Formula (10) represents the functional expression for
the minimal optimization problem.

Computers have been developing and progressing con-
tinuously since their appearance in 1946 and have been fully
used in various fields of social production. Although the
development is very rapid, the production needs of human
beings are also expanding, and the traditional computing
performance cannot meet the current development needs,
so high-performance computing came into being. With
the ever-increasing demand for computing power, high-
performance computing is also evolving. The current
research directions of high-performance computing include
cluster computing, network computing, cloud computing,
and FPGA-based reconfigurable heterogeneous computing
[21]. The initial high-performance computing focused on
the computing field, but with the continuous improvement
of high-performance computing, high-performance comput-
ing has basically become an essential means of research, and
high-performance computing can be seen in various fields.
From computers, minicomputers to mainframes, the devel-
opment and replacement of computers are fast, but they still
cannot meet the needs of computing. Scientific computing,
network computing, terminal computing, cloud computing,
supercomputing, intelligent computing, GPU computing

Figure 1: Nanopowder image.
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Figure 2: Common nanomaterial quiz structure.
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and other computing modes, concepts, technologies, and
applications dominate the progress and development of
science and technology. Quantum computing, brain-like
computing, borderless computing, human-machine-object
ternary fusion computing, data-intensive computing, etc.
have brought computing into the era of diversity. Although
high performance computing has many advantages, the
issues affecting the development of high performance com-
puting are power consumption, energy efficiency ratio,
energy saving, ecological environment and industrialization,
performance and scalability, reliability and fault tolerance,
application efficiency and applicability, efficient manage-
ment, and low threshold operation [22, 23].

Figure 5 is a schematic diagram of a high-performance
scientific computing cluster architecture.

China’s research on high-performance computing is rel-
atively late, and the pace of research has been officially
started since the advent of China’s first shared storage mul-
tiprocessor system. The Dawning 400A, developed in 2004,
has entered the top ten in the world in computing power.
In 2017, the world’s first optical quantum computer that sur-
passed the early classical computers was born. The successful
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development of the E-class system in 2018 shows that
China’s computing level has entered the forefront of the
world and occupies a very important position in the field
of high-performance computing. Figure 6 is a schematic dia-
gram of a high performance computing architecture.

GC-MS is an analytical instrument that can obtain a set
of chronological data during the experiment. During the
experiment, the target object is composed of t parts, then
each component is 1, 2, 3 ... n; the specific function expres-
sion is as follows:

W1 =W11,W12,ΛW1M , ð11Þ

W2 =W21,W22,ΛW2M , ð12Þ

WN =WN1,WN2,Λ,WNM: ð13Þ
Among them, W stands for different components.
Introducing the above formula into a matrix, it can be

simplified to

W =

W11, W12, Λ W1M

W21, W22, Λ W2M

Λ Λ Λ Λ

WN1, WN2, Λ WNM

0
BBBBB@

1
CCCCCA
: ð14Þ

If the matrix is the distribution of n mixtures during
the experiment; then, it can be represented by a two-
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Parallel
computing

node

Blade
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Index
controller

Figure 5: High-performance scientific computing cluster architecture.
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Figure 6: High-performance computing architecture.
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dimensional matrix. Each row represents a time point, and
each column represents the distribution status. The spe-
cific function expression is as follows:

E =

E11, E12, Λ E1N

E21, E22, Λ E2N

Λ Λ Λ Λ

EU1, EU2, Λ EUN

0
BBBBB@

1
CCCCCA
: ð15Þ

Among them, E represents a two-dimensional matrix.

QK Cð Þ = 2
R cð Þ〠

n

k=1
Nuk ∗ Yuk: ð16Þ

Among them, Q represents the set of indicators, and
QKðCÞ represents the indicators under point C.

α Cð Þ =
ð1
M

QK Cð Þ − 1
m
〠
m

k=1
QK Cð Þ

 !3

: ð17Þ

Among them, according to 0 <QKðCÞ ≤ 1, 0 ≤ αðCÞ <
0:57 can be obtained.

β Cð Þ = 1 − 2 ∗ α Cð Þ: ð18Þ

Among them, according to 0 ≤ αðCÞ < 0:57, 0 ≤ βðCÞ ≤ 1
can be obtained.

QWj c, rð Þ = 1ffiffi
c

p
ð+∞
−∞

j rð Þχ ∗
w − t
c

� �
dw: ð19Þ

Among them,QWjðc, rÞ is the wavelet coefficient, χðwÞ is
the wavelet basis function, and jðrÞ is the analysis signal.

LV =W diag s vð Þ
� 	

DU +Qv , v = 1, 2,Λ, V : ð20Þ

Among them, L stands for cubic matrix, W stands for
pure chromatogram, and D stands for pure mass spectrum.

4. Swarm Intelligence Algorithm and
Evolutionary Computation for Carbon
Nanotube Structure
Optimization Experiment

4.1. Experimental Material Parameters. Materials are the
material basis for human survival and the symbol of human
material civilization. Materials are the backbone of modern
science and technology. At the same time, the progress of
science and technology has put forward higher requirements
for materials. The structural optimization of carbon nano-
tube materials explored in this paper is expected to bring
infinite possibilities for development through the optimiza-
tion of material structure. The material parameters involved
in this paper are as follows.

As can be seen from the data in Table 1, assuming that
the diameter of the nanoparticles is 10 nm and the thickness
of the interface layer is 10 nm, when the volume of the nano-
particles increases continuously, the elastic modulus of the
material will also change and show a certain linear law.
When the diameter of the nanoparticle is 11.3 nm and the
volume fraction is 6%, its elastic modulus is 0.31, and when
the volume fraction is 10%, its elastic modulus is 0.35. When
the diameter of the nanoparticle is 12.4 nm and the volume
fraction is 6%, its elastic modulus is 0.32, and when the vol-
ume fraction is 10%, its elastic modulus is 0.33. When the
diameter of the nanoparticle is 13.24 nm and the volume

Table 2: Nanoparticle unit cell elastic stiffness matrix.

Z (GPa) 1 2 3 4 5

1 6.98 5.32 5.01 -0.31 -0.05

2 7.63 6.31 5.21 -0.04 1.37

3 6.31 4.74 6.97 1.43 0.39

4 5.02 5.25 3.28 0.41 1.39

5 -0.41 -0.03 -0.15 0.039 0.52

Table 3: Matrix action energy.

Grain
size

Volume
Energy
is 5%

Energy
is 10%

5% energy
per unit
volume

10% energy
per unit
volume

10 4258 -304 -402 -0.09 -0.015

11.27 6512 -501 -456 -0.08 -0.06

12.3 7365 -536 -526 -0.07 -0.03

13.2 8964 -648 -614 0.06 -0.054

14.1 10254 -712 -715 -0.043 0.048

Table 4: Single cell model and single cell mechanical properties.

Performance PI
Volumetric
fraction 5%

Volumetric
fraction 10%

Young’s modulus 4.15 4.6 4.79

Volume 5.4 5.87 7.43

Lamé constant 4.62 4.71 6.25

Shear modulus 1.53 1.63 1.71

Poisson’s ratio 0.35 0.36 0.37

Table 1: Mechanical parameters of composite materials.

Grain size
Volumetric fraction 6% Volumetric fraction 10%
A (GPa) B (GPa) c A (GPa) B (GPa) c

10 4.52 1.68 0.32 5.23 1.93 0.35

11.3 4.47 1.65 0.31 5.22 1.9 0.35

12.4 4.45 1.65 0.32 5.2 1.87 0.33

13.24 4.43 1.63 0.32 5.17 1.85 0.34

14.8 4.4 1.61 0.31 5.13 1.83 0.33
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fraction is 6%, its elastic modulus is 0.32, and when the
volume fraction is 10%, its elastic modulus is 0.34. When
the diameter of the nanoparticle is 14.8 nm and the volume
fraction is 6%, its elastic modulus is 0.31, and when the
volume fraction is 10%, its elastic modulus is 0.33. Accord-
ing to the data, when the particle diameter increases, the
elastic modulus decreases and the change trend is relatively
gentle.

According to the data in Table 2, there are many factors
that affect carbon nanomaterials, and anisotropic materials
are used in the experiment. However, according to the data
in Table 2, the values of many materials can be regarded as
zero, and there are also many materials whose values are
relatively close under certain conditions. In fact, when
determining the range of particle variation, the number
of atoms increases at a certain rate, and when the volume
fraction of nanoparticles is 6%, the number of unit cells

surges, and the number of filled molecular chains also
increases rapidly.

4.2. Correlation between Material Structure and Matrix.
Nanocomposites consist of filler particles, a polymer matrix,
and an interface between the two. In order to explore the
relationship between the properties and energy of nanoma-
terial structures, it is necessary to perform single-point
energy calculations to obtain the interaction energy between
the two.

According to the data in Table 3, when the nanoparticles
embedded in the unit cell are enlarged, the number of atoms
around them will also increase, and the number of non-
bonded pairs between the nanomaterial structure and the
matrix will also increase, so the interaction between the
two also increases. When the diameter of the material is
10 nm and the volume is 4285, the energy ratios are -0.09
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and -0.015 in different cases, respectively. When the diame-
ter of the material is 11.27 nm and the volume is 6512, its
energy ratios are -0.08 and -0.06 under different conditions,
respectively. When the material has a diameter of 12.3 nm
and a volume of 7365, its energy ratios are -0.07 and -0.03
under different conditions, respectively. When the diameter
of the material is 13.2 nm and the volume is 8964, its energy
ratios are 0.06 and -0.054 under different conditions, respec-
tively. When the diameter of the material is 14.1 nm and the
volume is 10254, its energy ratios are -0.043 and 0.048 under
different conditions, respectively. According to this data, the
qualitative correlation between the elastic properties of
nanomaterials and the action energy is also related to the
volume of nanoparticles. When the diameter of nanoparti-
cles increases, the body-to-surface ratio decreases, resulting
in a decrease in the number of nonbonded pairs, weakening
the interaction energy, and reducing the elastic modulus of
the composite.

4.3. Single-Cell Model and Single-Cell Mechanical Properties.
Combined with molecular dynamics, this experiment simu-

lates the mechanical properties of nanomaterials, explores
the effects of nanoparticles and volume, and explores the
relationship between the number of nanoparticles and the
properties of composite materials.

According to the data in Table 4, when the PI of the
nanomaterial is 4.15 and the volume fraction is 5%, the
Young’s modulus of the material is 4.6, and when the vol-
ume fraction is 10%, the Young’s modulus of the material
is 4.79. When the PI of the nanomaterial is 5.4 and the vol-
ume fraction is 5%, the Lame constant of the material is 4.71,
and when the volume fraction is 10%, the Lame constant of
the material is 6.25. When the PI of the nanomaterial is 1.53
and the volume fraction is 5%, the shear modulus of the
material is 1.63, and when the volume fraction is 10%, the
shear modulus of the material is 1.71. When the PI of the
nanomaterial is 0.35 and the volume fraction is 5%, the
Poisson’s ratio of the material is 0.36, and when the volume
fraction is 10%, the Poisson’s ratio of the material is 0.37.
According to this data, the Young’s modulus, shear modu-
lus, Lame constant, and volume of the composites all
increased when nanoparticles were added to the material.
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And the data show that the difference becomes more obvi-
ous with the increasing volume, but the Poisson’s ratio does
not change much.

5. Swarm Intelligence Algorithm and
Evolutionary Computation for Structure
Optimization of Carbon Nanotubes

5.1. Gas Sensitivity of Carbon Nanotubes. Sensors are an
important tool in modern technology. Gas sensitivity is an
important branch of sensors that can detect different gases.
Therefore, gas sensors are widely used in food and medical
fields. Based on this, in order to find out the optimal doping
concentration of carbon nanotubes for the two metal oxides,
we analyzed them as follows.

According to the data in Figure 7, in order to explore the
doping concentration of carbon nanotubes to different
oxides, we analyzed the nanomaterials at different tempera-

tures. When the experimental temperature is 150 degrees
Celsius, the sensitivity of tin oxide is 0, and the sensitivity
of indium oxide is 0.4 in the case of dopant. When the dop-
ing content of tin oxide is 1%, the sensitivity of the sensor is
1.5, and when the doping content of indium oxide is 1%, the
sensitivity of the sensor is 1.2. When the doping content of
tin oxide is 3%, the sensitivity of the sensor is 2.4, and when
the doping content of indium oxide is 3%, the sensitivity of
the sensor is 3. When the doping content of tin oxide is
5%, the sensitivity of the sensor is 3.6, and when the doping
content of indium oxide is 5%, the sensitivity of the sensor is
2.4. When the doping content of tin oxide is 7%, the sensitiv-
ity of the sensor is 2.5, and when the doping content of
indium oxide is 7%, the sensitivity of the sensor is 2. Accord-
ing to the data, when the doping content of tin oxide is 5%,
the sensitivity of the sensor is the best, and when the doping
content of indium oxide is 3%, the sensitivity of the sensor is
the best.
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Figure 9: Schematic diagram of the secondary mechanical properties of the composite material.
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When the experimental temperature is 250 degrees Cel-
sius, in the case of dopant, the sensitivity of tin oxide is 1,
and the sensitivity of indium oxide is 0.8. When the doping
content of tin oxide is 1%, the sensitivity of the sensor is 4.8,
and when the doping content of indium oxide is 1%, the sen-
sitivity of the sensor is 2.2. When the doping content of tin
oxide is 3%, the sensitivity of the sensor is 5.3, and when
the doping content of indium oxide is 3%, the sensitivity of
the sensor is 5.1. When the doping content of tin oxide is
5%, the sensitivity of the sensor is 11, and when the doping
content of indium oxide is 5%, the sensitivity of the sensor is
5.7. When the doping content of tin oxide is 7%, the sensitiv-
ity of the sensor is 7, and when the doping content of indium
oxide is 7%, the sensitivity of the sensor is 4. According to
the data, when the doping content of tin oxide is 5%, the
sensitivity of the sensor is the best, and when the doping
content of indium oxide is 5%, the sensitivity of the sensor
is the best.

According to the data in Figure 8, when the experimental
temperature is 350 degrees Celsius, in the case of dopant, the
sensitivity of tin oxide is 3.2, and the sensitivity of indium
oxide is 2.1. When the doping content of tin oxide is 1%,
the sensitivity of the sensor is 3.7, and when the doping con-
tent of indium oxide is 1%, the sensitivity of the sensor is 3.4.
When the doping content of tin oxide is 3%, the sensitivity
of the sensor is 4, and when the doping content of indium
oxide is 3%, the sensitivity of the sensor is 6.2. When the
doping content of tin oxide is 5%, the sensitivity of the sen-
sor is 7, and when the doping content of indium oxide is 5%,
the sensitivity of the sensor is 4.3. When the doping content
of tin oxide is 7%, the sensitivity of the sensor is 4.2, and
when the doping content of indium oxide is 7%, the sensitiv-
ity of the sensor is 3. According to the data, when the doping
content of tin oxide is 5%, the sensitivity of the sensor is the
best, and when the doping content of indium oxide is 3%,
the sensitivity of the sensor is the best.
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Figure 10: Schematic diagram of the relationship between composite material modulus and particle size.
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According to the experimental data, the sensitivity of
carbon nanotubes changes differently at different tempera-
tures. The sensitivity of tin oxide is the best at 350 degrees
Celsius, and the sensitivity of indium oxide is the best at
300 degrees Celsius.

5.2. Performance of Carbon Nanotube Materials. According
to Figure 9, the tensile strength, elongation, and Young’s
scale of the original nanomaterials all decreased to varying
degrees, mainly due to the structural defects induced by
the agglomerates in the matrix, resulting in a decrease in
the mechanical energy of the nanomaterials. The improved
agglomerates show an initial decrease in energy, allowing
them to be more uniformly dispersed in the matrix, while
improving the interfacial interaction with the matrix. From
a macroscopic point of view, the elastic modulus is a mea-
sure of the resistance of an object to elastic deformation.
From a microscopic level, as long as it is a factor that can
interfere with the strength of the inspection, it can affect
the elastic modulus.

According to the data in Figure 10, after the nanopar-
ticles are modified, the Young’s modulus and shear modu-
lus of the composite have increased to varying degrees.
And according to Figure 10, it can be seen that with the
increase of the graft ratio, there will be an increasing
trend, and at the same time, the performance of the com-
posite material will decrease with the increase of the drop
of nanoparticles.

6. Conclusions

With the development of science and technology, people’s
production needs are increasing, and traditional computing
power cannot meet the needs of production. Therefore,
optimal computing has become a current research hotspot.
With the gradual deepening of people’s understanding of
natural science, more and more materials are produced.
The purpose of this paper is to study the structure optimiza-
tion of carbon nanotubes based on swarm intelligence
algorithm and evolutionary calculation. Although this paper
discusses the structure and optimization calculation of
carbon nanotubes, there are still shortcomings: when the
single-objective particle swarm optimization algorithm
solves high-dimensional complex problems, it is still easy
to fall into the local optimal solution, and the convergence
accuracy still has a large room for improvement.
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