
Research Article
Estimation of Entropy for Log-Logistic Distribution under
Progressive Type II Censoring

M. Shrahili ,1 Ahmed R. El-Saeed,2 Amal S. Hassan,3 Ibrahim Elbatal ,4

and Mohammed Elgarhy 5

1Department of Statistics and Operations Research, College of Science, King Saud University,
P. O. Box 2455 Riyadh 11451, Saudi Arabia
2Department of Basic Sciences, Obour High Institute for Management & Informatics, Egypt
3Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt
4Department of Mathematics and Statistics,
College of Science Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia
5The Higher Institute of Commercial Sciences, Al Mahalla Al Kubra, Algarbia 31951, Egypt

Correspondence should be addressed to Ibrahim Elbatal; iielbatal@imamu.edu.sa
and Mohammed Elgarhy; m_elgarhy85@sva.edu.eg

Received 7 January 2022; Revised 3 March 2022; Accepted 8 March 2022; Published 23 March 2022

Academic Editor: V. Vijayan

Copyright © 2022 M. Shrahili et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Entropy is a useful indicator of information content that has been used in a number of applications. The Log-Logistic (LL)
distribution is a probability distribution that is often employed in survival analysis. This paper addresses the problem of
estimating multiple entropy metrics for an LL distribution using progressive type II censoring. We derive formulas for six
different types of entropy measurements. To obtain the estimators of the proposed entropy measures, the maximum likelihood
approach is applied. Approximate confidence intervals are calculated for the entropy metrics under discussion. A numerical
evaluation is performed using various censoring methods and sample sizes to characterize the behavior of estimator’s measures
using relative biases, related mean squared errors, average interval lengths, and coverage probabilities. Numerical analysis
revealed that the accuracy measures improve with sample size, and the suggested entropy estimates approach the genuine
values as censoring levels decrease. Finally, an actual dataset was evaluated for demonstration purposes.

1. Introduction

Over the last few decades, log-logistic (or Fisk) distribution
(LLD) has been frequently employed, notably in the areas
of survival and reliability. The LLD is a popular alternative
to the log-normal distribution because it has a failure rate
function that grows with time, peaks after a certain period,
and then gradually reduces [1]. Unlike the log-normal, the
cumulative distribution function (CDF) of LLD has a closed
form. For some parameter values, this distribution can have
a monotonically declining failure rate function. In econom-
ics, the LLD is used to simulate wealth and income [2], while

in hydrology, the LLD is used to describe stream flow data
[3]. For additional details on the significance and applica-
tions of a LLD, see Bennett [4], Ahmad et al. [5], and Robson
and Reed [6].

A random variable (RVr) X is said to have a LLD with
the scale parameter α and the shape parameter β if its
CDF is provided via

F yð Þ = 1 + y
α

� �−β� �−1
, y > 0, α, β > 0: ð1Þ
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The probability density function (PDF) corresponding
to (1) is then provided via

f yð Þ = β

αβ
yβ−1 1 + y

α

� �β� �−2
, y > 0, α, β > 0: ð2Þ

The hazard function of the LLD is either decreasing or
inverted bath-tub, and the PDF is either reversed J shaped
or unimodal, see Johnson et al. [7].

In reliability studies, researchers want to see how long it
takes for units to fail. However, due to time and expense
restrictions, as well as a variety of other factors, experi-
menters are unable to track the lifetime of all units. As a
result, filtered data is available. The most frequent types
are type I and type II. In the statistical literature, popular
censoring techniques are explored. However, in medical/
engineering survival analysis, units may be removed at inter-
mediate phases for a variety of causes beyond the
experimenter’s control. In this case, progressive censoring
(PC) system is an acceptable censoring strategy since it per-
mits surviving items to be removed before the test ends. PC
has the benefit of quickly terminating the test and including
at least some extreme life periods in the sample data. Pro-
gressive type I censoring (PT1C) happens when the number
of survivors reduces to predefined levels, whereas progres-
sive type II (PT2C) occurs when the number of survivors
drops to specified levels.

The following is how a PT2C sample is carried out: A life
testing experiment with n units and the PC method ri
,i = 1, 2,⋯,m is used. Units are randomly eliminated from
the remaining n – 1 surviving units at the moment of the
first failure y1. Similarly, units from the remaining n − 2 −
r1 units are randomly eliminated after the second failure y2
. The test continues until the mth failure occurs, at which
point all remaining n −m − r1 − r2 −⋯−rm−1 units are
removed. The number of failuresm as well as the progressive
censoring design r1, r2,⋯, rm is preset and fixed. Let Y ð1Þ
≤ Y ð2Þ: ≤⋯≤Y ðmÞ denote such a PT2C sample with ðr1,⋯
, rmÞ being the PC scheme. Balakrishnan and Aggrawala
[8] provided some historical remarks and a good summary
of progressive censoring. It really should be observed that
this censorship is limited to the classical type II censoring
(T2C) when r1 = r2= ⋯ = rm−1 = 0 and rm = n −m; further,
it reduces to a complete sample having no censoring for m
= n and ri = 0, i = 1, 2,⋯, n:

In information theory, entropy is a measure of
uncertainty in a RVr that gauges the anticipated value of
the information embodied in that RVr. Entropies are moti-
vated by how receiving new information decreases uncer-
tainty. Shannon’s entropy is one of the earliest and most
commonly used measurements of entropy. In the study of
communication systems, this measure has proven to be
effective. Let Y be a non-negative RVr with a continuous
CDF; the formal measure of Shannon’s entropy is
characterized by:

S = −
ð∞
−∞

f yð Þ log f yð Þð Þdy: ð3Þ

One of the most significant disadvantages of Shannon’s
measure is that it may be negative for particular probability
distributions, making it useless as a measure of uncertainty.
Rényi [9] developed a new generalized entropy by studying
the concepts of uncertainty and randomness. The Rényi
entropy (Ré) is calculated as follows:

Rγ = 1−γð Þ−1 log
ð∞
−∞

f yð Þγdy
� �

, γ > 0 and γ ≠ 1, ð4Þ

where the constant γ is conditional, leading to a positive
entropy. Different generalizations of entropy were proposed
by Havrda and Charvat [10], Arimoto [11], Awad et al. [12],
and Tsallis [13].

Havrda and Charvat’s (HC) entropy suggested extension
of (3). This extension is called HC entropy of degree γ and is
characterized with

HCγ =
1

21−γ−1

ð∞
−∞

f yð Þγdy − 1
� 	

: ð5Þ

Arimoto’s (Ar) entropy measure (see [11]) is character-
ized with

Aγ =
γ

1−γ

ð∞
−∞

f yð Þγdy
� �1

γ

− 1
" #

: ð6Þ

Awad et al. [12] suggested two types of entropy: an
extension of Réyni entropy and Havrda and Charvat
entropy. The first extension, denoted byA1γ, and the second
extension, denoted byA2γ, are characterized with

A1γ =
1

γ−1 log
ð∞
−∞

f yð Þγ
υ

dy
� 	

, υ = sup
0<y<∞

f yð Þ
" #1−γ

, ð7Þ

A2γ =
1

21−γ−1

ð∞
−∞

f yð Þγ
υ

dy
� �

− 1
� 	

: ð8Þ

Table 1: Removal patterns of units in numerous censoring
schemes.

n,mð Þ Censoring schemes
Scheme I Scheme II Scheme III

(60,10) (0∗9, 50) (5∗10) (50, 0∗9)

(60,20) (0∗19, 40) (2∗20) (40, 0∗19)

(60,30) (0∗29, 30) (1∗30) (30, 0∗29)

(60,60) Complete sample (0∗60)
For contrast, (1∗5, 0) denotes that the censoring scheme used is (1, 1, 1, 1, 1,
0).
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Table 2

(a) Rbias, MSE, AIL, and CP of different entropy estimates under PT2C schemes at γ = 0:5, and ðn,mÞ = ð60, 10Þ

Scheme
Entropy methods

Rγ HCγ Aγ Tγ A1γ A2γ

I

Exact value 2.2690 5.0930 8.6696 4.2192 1.1987 -1.0884

Estimate 1.7878 4.3804 9.4136 3.6289 1.9795 -1.2832

Rbias 0.2121 0.1399 0.0858 0.1399 0.6514 0.1790

MSE 1.3496 15.0356 166.7630 10.3188 2.5768 0.6486

AIL 4.1469 14.9484 50.5619 12.3837 5.5007 3.0647

CP (%) 95.20 94.60 94.70 94.60 95.90 94.00

II

Estimate 1.9068 4.4836 8.8110 3.7143 1.7539 -1.2101

Rbias 0.1596 0.1197 0.0163 0.1197 0.4632 0.1118

MSE 0.9131 9.9744 87.5434 6.8453 1.8282 0.5637

AIL 3.4680 12.1534 36.6908 10.0682 4.8351 2.9056

CP (%) 95.30 94.50 94.40 94.50 95.60 94.40

III

Estimate 2.1477 5.0985 9.9041 4.2237 1.3879 -1.0378

Rbias 0.0535 0.0011 0.1424 0.0011 0.1578 0.0465

MSE 0.5120 7.1138 67.2224 4.8822 1.1105 0.5405

AIL 2.7655 10.4604 31.7887 8.6656 4.0658 2.8765

CP (%) 95.90 95.60 94.90 95.60 95.10 95.70

(b) Rbias, MSE, AIL, and CP of different entropy estimates under PT2C schemes at γ = 0:5, and ðn,mÞ = ð60, 20Þ

Scheme
Entropy methods

Rγ HCγ Aγ Tγ A1γ A2γ

I

Exact value 2.2690 5.0930 8.6696 4.2192 1.1987 -1.0884

Estimate 2.0413 4.6608 8.5353 3.8612 1.5384 -1.1417

Rbias 0.1004 0.0849 0.0155 0.0849 0.2834 0.0490

MSE 0.4951 5.7061 42.4241 3.9160 1.1759 0.4370

AIL 2.6111 9.2138 25.5393 7.6329 4.0389 2.5840

CP (%) 95.70 96.30 95.00 96.30 95.40 95.70

II

Estimate 2.1097 4.8192 8.7517 3.9923 1.4324 -1.1062

Rbias 0.0702 0.0538 0.0095 0.0538 0.1950 0.0164

MSE 0.3686 4.5905 35.1121 3.1504 0.8884 0.3822

AIL 2.2978 8.3339 23.2371 6.9040 3.5810 2.4236

CP (%) 95.40 95.70 95.50 95.70 95.40 95.50

III

Estimate 2.1680 4.9539 8.9216 4.1039 1.3719 -1.0937

Rbias 0.0445 0.0273 0.0291 0.0273 0.1445 0.0049

MSE 0.2644 3.5581 27.6580 2.4419 0.6971 0.3048

AIL 1.9773 7.3776 20.6019 6.1118 3.2033 2.1650

CP (%) 95.60 96.20 95.30 96.20 95.70 96.30

(c) Rbias, MSE, AIL, and CP of different Entropy estimates under PT2C schemes at γ = 0:5, and ðn,mÞ = ð60, 30Þ

Scheme
Entropy methods

Rγ HCγ Aγ Tγ A1γ A2γ

I

Exact value 2.2690 5.0930 8.6696 4.2192 1.1987 -1.0884

Estimate 2.1433 4.8692 8.6973 4.0338 1.3889 -1.0901

Rbias 0.0554 0.0439 0.0032 0.0439 0.1587 0.0016
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Tsallis [13] generalized Shanon’s entropy and defined
the measure as

Tγ =
1

γ − 1 1−
ð∞
−∞

f yð Þγdy
� 	

: ð9Þ

Many researchers have worked on entropy estimates for
various life distributions. Cramer and Bagh [14] used pro-
gressive censoring to investigate entropy in the Weibull
distribution. Kang et al. [15] used doubly type II censored
data to construct entropy estimators for a double exponen-
tial distribution. Using record values from the generalized
half-logistic distribution, Seo et al. [16] calculated an entropy
estimate. Cho et al. [17] addressed entropy estimates for
Rayleigh distribution using doubly generalized type II hybrid
censoring. Cho et al. [18] used generalized type II hybrid
censored samples to derive estimators for the entropy func-
tion of a Weibull distribution. Dey et al. [19] studied the loss
of entropy for a truncated Rayleigh distribution using differ-
ent entropy measures. Chacko and Asha [20] investigated
entropy estimation in generalized exponential distribution.
Bantan et al. [21] considered the entropy estimators for
inverse Lomax via the multiple censored scheme. The
dynamic cumulative residual Ré for the Lomax distribution
was estimated using Bayesian and maximum likelihood
(ML) techniques by Al-Babtain et al. [22]. Entropy estimator
of Lindley was prepared by Almarashi et al. [23]. Helmy
et al. [24] investigated Shannon entropy estimation of
Lomax distribution using unified hybrid censored data.
Bayesian and non-Bayesian estimation of the Nadarajah–
Haghighi distribution using progressive Type-1 censoring
scheme studied by Elbatal et al. [25].

In this paper, we are inspired to investigate six possible
entropy estimators for log-logistic distributions in the pres-
ence of T2PC data. We construct analytical formulas for
the entropy measurements proposed. The ML and two-
sided approximate confidence intervals of several entropy

estimators are calculated. Numerical comparisons for vari-
ous sample sizes are presented to identify which entropy
estimator outperforms the others.

The paper is broken down into five sections. Section 2
presents expressions for the recommended entropy mea-
sures based on LLD. PT2C is used in Section 3 to give several
entropy estimators as well as their estimated confidence
intervals. In Section 4, numerical comparisons of different
entropy estimators and data analysis are examined. Finally,
in Section 5, there are some conclusions and a summary of
the study.

2. Expressions of Entropy Measures

Statistical entropy measures the amount of uncertainty or
variability in a RVr. The higher the value of entropy leads
to more variability in the data. This section focuses on
obtaining the expression for various entropy measurements
of LLD.

2.1. Rényi Entropy. The Ré of LLD is obtained by replacing
(1) in (3) as follows:

Rγ = 1 − γð Þ−1 log βγ

αβγ

ð∞
0
yβγ−γ 1 + y

α

� �β� �−2γ
dy

( )
: ð10Þ

Write I = βγ/αβγÐ∞0 yβγ−γð1 + ðy/αÞβÞ−2γdy, and assume

that z = ðy/αÞβ, y = αz1/βdy = ðα/βÞz1/β−1dz, thus the integral
I will be written as

I = βγ−1

αβγ−1

ð∞
0
αβγ−γzγ−

γ
β
+1
β
−1 1 + zð Þ−2γdz

= βγ−1α1−γB γ −
γ

β
+ 1
β
, γ + γ

β
−
1
β

� �
,

ð11Þ

Table 2: Continued.

Scheme
Entropy methods

Rγ HCγ Aγ Tγ A1γ A2γ
MSE 0.2798 3.5222 25.7945 2.4172 0.7902 0.3600

AIL 2.0151 7.3078 19.9183 6.0540 3.4055 2.3530

CP (%) 95.30 95.50 95.10 95.50 94.99 95.89

II

Estimate 2.1675 4.9167 8.7186 4.0732 1.3572 -1.0943

Rbias 0.0447 0.0346 0.0057 0.0346 0.1322 0.0054

MSE 0.2291 2.9321 21.1112 2.0123 0.6348 0.2711

AIL 1.8345 6.6799 18.0189 5.5338 3.0622 2.0417

CP (%) 95.40 95.40 95.40 95.40 94.40 95.40

III

Estimate 2.2079 5.0444 9.0077 4.1789 1.2861 -1.0521

Rbias 0.0269 0.0095 0.0390 0.0095 0.0729 0.0334

MSE 0.1969 2.7007 20.2460 1.8535 0.5708 0.2822

AIL 1.7238 6.4423 17.5969 5.3370 2.9431 2.0787

CP (%) 94.90 94.80 94.50 94.80 94.90 95.10
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Table 3

(a) Rbias, MSE, AIL, and CP of different Entropy estimates under PT2C schemes at γ = 1:5, and ðn,mÞ = ð60, 10Þ

Scheme
Entropy methods

Rγ HCγ Aγ Tγ A1γ A2γ

I

Exact value 0.5601 0.8339 0.5109 0.4885 2.9076 -11.1963

Estimate 0.3186 0.3469 0.2329 0.2032 3.3739 -17.4037

Rbias 0.4312 0.5840 0.5441 0.5840 0.1604 0.5544

MSE 1.0201 1.0552 0.3681 0.3621 1.5820 16.4038

AIL 3.8461 3.5471 2.1151 2.0778 4.5814 8.7875

CP (%) 99.90 95.30 95.40 95.30 98.00 94.90

II

Estimate 0.3901 0.4935 0.3156 0.2891 3.2303 -15.4706

Rbias 0.3034 0.4082 0.3823 0.4082 0.1110 0.3818

MSE 0.6745 0.6767 0.2438 0.2322 1.1372 9.5542

AIL 3.1511 2.9370 1.7784 1.7205 3.9863 6.8951

CP (%) 99.70 95.20 95.30 95.20 98.30 94.50

III

Estimate 0.4853 0.6819 0.4254 0.3994 3.0255 -12.8624

Rbias 0.1335 0.1823 0.1674 0.1823 0.0406 0.1488

MSE 0.1656 0.3220 0.1247 0.1105 0.4050 3.0465

AIL 1.5689 2.1440 1.3435 1.2559 2.4526 4.1274

CP (%) 95.10 95.10 95.20 95.10 94.80 96.30

(b) Rbias, MSE, AIL, and CP of different Entropy estimates under PT2C schemes at γ = 1:5, and ðn,mÞ = ð60, 20Þ

Scheme
Entropy methods

Rγ HCγ Aγ Tγ A1γ A2γ

I

Exact value 0.5601 0.8339 0.5109 0.4885 2.9076 -11.1963

Estimate 0.4796 0.6946 0.4292 0.4069 3.0801 -13.3805

Rbias 0.1437 0.1671 0.1600 0.1671 0.0593 0.1951

MSE 0.1048 0.2064 0.0801 0.0708 0.4507 3.6689

AIL 1.2295 1.6960 1.0624 0.9935 2.5447 4.4314

CP (%) 95.40 95.60 95.90 95.60 95.00 95.30

II

Estimate 0.4936 0.7208 0.4442 0.4223 3.0513 -12.8807

Rbias 0.1188 0.1356 0.1306 0.1356 0.0494 0.1505

MSE 0.0810 0.1554 0.0609 0.0533 0.3152 2.3936

AIL 1.0853 1.4813 0.9317 0.8677 2.1286 3.6029

CP (%) 95.30 95.30 95.10 95.30 95.20 95.40

III

Estimate 0.4997 0.7270 0.4485 0.4259 3.0106 -12.4840

Rbias 0.1079 0.1282 0.1221 0.1282 0.0354 0.1150

MSE 0.0864 0.1642 0.0645 0.0563 0.2711 1.9416

AIL 1.1280 1.5327 0.9652 0.8978 2.0016 3.3053

CP (%) 94.60 94.70 94.80 94.70 94.30 95.80

(c) Rbias, MSE, AIL, and CP of different entropy estimates under PT2C schemes at γ = 1:5, and ðn,mÞ = ð60, 30Þ

Scheme
Entropy methods

Rγ HCγ Aγ Tγ A1γ A2γ

I

Exact value 0.5601 0.8339 0.5109 0.4885 2.9076 -11.1963

Estimate 0.5081 0.7498 0.4606 0.4392 3.0397 -12.7520

Rbias 0.0928 0.1008 0.0985 0.1008 0.0454 0.1389
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where Bð:, :Þ is the beta function. As a result of inserting (11)
into (10), LLD’s Ré entropy takes the form

Rγ = 1 − γð Þ−1 log βγ−1α1−γB γ −
γ

β
+ 1
β
, γ + γ

β
−
1
β

� �� �
,

ð12Þ

Hence, (12) is the necessary formulation of LLD Ré
entropy.

2.2. Havrda and Charvat Entropy. The HC of the LLD is
obtained by replacing (1) in (4) as follows:

HCγ =
1

21−γ − 1
βγ

αβγ

ð∞
0
yβγ−γ 1 + y

α

� �β� �−2γ
dy − 1

" #
: ð13Þ

As a result, we get the HC of LLD by inserting (11) in (4)
as follows

HCγ =
1

21−γ − 1 βγ−1α1−γB γ −
γ

β
+ 1
β
, γ + γ

β
−
1
β

� �
− 1

� 	
:

ð14Þ

Hence, (14) is the necessary formulation of LLD HC
entropy.

2.3. Arimoto Entropy. The Ar entropy of LLD is obtained by
replacing (1) in (5) as follows:

Aγ =
γ

1 − γ

βγ

αβγ

ð∞
0
yβγ−γ 1 + y

α

� �β� �−2γ
dy

 !1
γ

− 1

24 35: ð15Þ

Table 3: Continued.

Scheme
Entropy methods

Rγ HCγ Aγ Tγ A1γ A2γ
MSE 0.0510 0.0944 0.0375 0.0324 0.2928 2.2382

AIL 0.8622 1.1591 0.7337 0.6790 2.0582 3.5045

CP (%) 95.20 95.40 95.40 95.40 94.90 96.10

II

Estimate 0.5195 0.7656 0.4704 0.4485 2.9842 -12.1793

Rbias 0.0725 0.0819 0.0792 0.0819 0.0263 0.0878

MSE 0.0484 0.0873 0.0350 0.0299 0.2182 1.4672

AIL 0.8479 1.1271 0.7163 0.6602 1.8073 2.9039

CP (%) 95.60 96.50 96.10 96.50 94.60 95.70

III

Estimate 0.5081 0.7498 0.4606 0.4392 3.0397 -12.7520

Rbias 0.0928 0.1008 0.0985 0.1008 0.0454 0.1389

MSE 0.0510 0.0944 0.0375 0.0324 0.2928 2.2382

AIL 0.8622 1.1591 0.7337 0.6790 2.0582 3.5045

CP (%) 95.20 95.40 95.40 95.40 95.00 96.00

Table 4: Rbias, MSE, AIL, and CP of different Entropy estimates under PT2C schemes at γ = ð0:5, 1:5Þ, and ðn,mÞ = ð60, 30Þ.

Scheme
Entropy methods

Rγ HCγ Aγ Tγ A1γ A2γ

0.5

Exact value 2.2690 5.0930 8.6696 4.2192 1.1987 -1.0884

Estimate 2.2430 5.0925 8.9237 4.2188 1.2379 -1.0622

Rbias 0.0115 0.0001 0.0293 0.0001 0.0327 0.0240

MSE 0.1039 1.4883 11.0349 1.0214 0.3110 0.1533

AIL 1.2601 4.7846 12.9899 3.9637 2.1816 1.5323

CP (%) 95.50 95.50 95.00 95.50 95.80 94.80

1.5

Exact value 0.5601 0.8339 0.5109 0.4885 2.9076 -11.1963

Estimate 0.5461 0.8069 0.4955 0.4727 2.9603 -11.8045

Rbias 0.0249 0.0324 0.0302 0.0324 0.0181 0.0543

MSE 0.0277 0.0478 0.0195 0.0164 0.1186 0.7083

AIL 0.6510 0.8507 0.5441 0.4983 1.3346 2.0323

CP (%) 95.40 95.50 95.30 95.50 94.90 95.10
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We obtain the Ar entropy of LLD by putting (11) into
(15) as follows

Aγ =
γ

1 − γ
β1−1

γα
1
γ−1 B γ −

γ

β
+ 1
β
, γ + γ

β
−
1
β

� �� �1
γ

− 1
" #

:

ð16Þ

Thus, the formula for Ar entropy found in equation (16).

2.4. A-entropies. To get (6) and (7), we must obtain sup
0<y<∞

f
ðyÞ, by getting the maximum value of f ðyÞ as below:

yβ−2 1 + y
α

� �β� �−3
β − 1ð Þ 1 + y

α

� �β� �
− 2 β

αβ
yβ

� �
= 0:

ð17Þ

After simplification, then (17) is written as follows

β + 1
αβ

yβ = β − 1, ð18Þ

which leads to the following

y = α
β − 1
β + 1

� �1
β

: ð19Þ

Using (17), we get sup
0<y<∞

f ðyÞ, as

sup
0<y<∞

f yð Þ = β

αβ
α

β − 1
β + 1

� �1
β

( )β−1

1 + β − 1
β + 1

� �1
β

 !β
0@ 1A−2

= β − 1ð Þ1−1/β β + 1ð Þ1+ 1/βð Þ

4αβ :

ð20Þ

Using (11) and (19), hence the A-entropies can be
expressed as

A1γ =
1

γ − 1 log β − 1ð Þ1−1/β β + 1ð Þ1+ 1/βð Þ

4αβ

" #1−γ
βγ−1α1−γB

"

� γ −
γ

β
+ 1
β
, γ + γ

β
−
1
β

� �	
,

ð21Þ

A2γ =
1

21−γ − 1
β − 1ð Þ1−1/β β + 1ð Þ1+ 1/βð Þ

4αβ

" #1−γ
βγ−1α1−γB

("

� γ −
γ

β
+ 1
β
, γ + γ

β
−
1
β

� ��
− 1�:

ð22Þ

Thus, (20) and (21) provide essential expressions of A-
entropy.

2.5. Tsallis Entropy. The Tsallis entropy of LLD is obtained
by replacing (1) in (9) as follows:

Tγ =
1

γ − 1 1 − βγ

αβγ

ð∞
0
yβγ−γ 1 + y

α

� �β� �−2γ
dy

" #
: ð23Þ

Thus, using (11) in (23), then the Tsallis entropy of LLD
is obtained as follows

Tγ =
1

γ − 1 1 − βγ−1α1−γB γ −
γ

β
+ 1
β
, γ + γ

β
−
1
β

� �� 	
: ð24Þ

Thus, the formula of Tsallis entropy of LLD is provided
in equation (24).

Table 5: Estimates of different entropy measures under PT2C schemes for the given real data, where γ = ð0:5, 1:5Þ, and ðn,mÞ = ð128,30Þ.

Scheme bα , bβ� � Entropy methods
Rγ HCγ Aγ Tγ A1γ A2γ

γ = 0:5
I bα = 6:9409bβ = 1:4379 4.6318 22.0524 101.7061 18.2688 1.3603 -1.1913

II bα = 6:0531 bβ = 1:6856 4.2481 17.7813 68.9778 14.7305 1.9920 -1.5225

III bα = 6:2489 bβ = 1:5729 4.3961 19.3326 80.1414 16.0157 1.7126 -1.3888

Complete bα = 6:0962 bβ = 1:7160 4.2227 17.5263 67.2218 14.5193 2.0659 -1.5548

γ = 1:5
I bα = 6:9409 bβ = 1:4379 3.2140 2.7297 1.9723 1.5990 2.7781 -10.2809

II bα = 5:3452bβ = 1:6388 2.8755 2.6034 1.8496 1.5251 3.1745 -13.2824

III bα = 4:7569 bβ = 1:6371 2.7595 2.5550 1.8042 1.4967 3.1715 -13.2575

Complete bα = 6:0962bβ = 1:7160 2.9766 2.6434 1.8877 1.5484 3.3120 -14.4713
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3. Estimation of Different Entropies

Using the ML method and T2PC data, we get estimators for
the various entropies metrics provided in the preceding sec-
tion. To construct entropies estimators, we start with the ML
estimator of population parameters. The invariance property
of ML estimators may then be used to determine the ML of
the recommended entropies measurements. Furthermore,
we obtain the approximate confidence intervals of the sug-
gested entropy measures.

Assume that Y ð1Þ ≤ Y ð2Þ≤⋯ ≤ Y ðmÞ be a PT2C sample of
size m from a sample of size n drawn from CDF (1) and
PDF (2) with censoring scheme r1, r2,⋯, rm: The likelihood
(L) function based on the PT2C sample is given by

L α, βð Þ = c
Ym
i=1

f y ið Þ
� �

1 − F y ið Þ
� �h iri = c

Ym
i=1

β

αβ
y ið Þ

β−1

� 1 +
y ið Þ
α

� �β
 !−2

1 − 1 +
y ið Þ
α

� �−β
 !−1" #ri

,

ð25Þ

where c = nðn − r1 − 1Þðn − r1 − r2 − 2Þ⋯ n −m + 1 −∑m−1
i=1

ri: Thus, the constant is the number of ways in which the
m PT2C order statistics may occur if the observed failure
times are Y ð1Þ, Y ð2Þ,⋯, Y ðmÞ: The log-L function of (25),
say ln L•, is then provided via

ln L• ∝m ln β − β ln αð Þ + β − 1ð Þ〠
m

i=1
lnyi − 2〠

m

i=1
ln 1 + zi

β
� �

+ 〠
m

i=1
ri ln 1 − 1 + zi

−β
� �−1� 	

:

ð26Þ

where we write zi = ðyi/αÞ, and zi = zðiÞ for simplified forms.
Form (26), we derive the L equation for α and β as

∂ ln L•

∂α
= −

mβ

α
+ 2β

α
〠
m

i=1

zi
β

1 + zið Þβ
+ αβ〠

m

i=1
ri

1 + zið Þ−β
� �−2

zið Þ−β

1 − 1 + zið Þ−β
� �−1 ,

ð27Þ

∂ ln L•

∂β
= m

β
−m ln α + 〠

m

i=1
lnyi − 2〠

m

i=1

zið Þβ ln zið Þ
1 + zið Þβ

− 〠
m

i=1
ri

1 + zið Þ−β
� �−2

zið Þ−β ln zið Þ

1 − 1 + zið Þ−β
� �−1 :

ð28Þ

The ML estimator of α and β can be obtained using the
numerical method by solving the non-linear Equations (27)
and (28) after setting them with zero. Once the ML estima-

tor of α and β, say bαand bβ , is computed, we can obtain the
ML estimator of entropy measures provided in (12), (14),
(16), (20), (21), and (24). Consequently, the ML estimator

of Ré entropy, denoted by R̂γ, is obtained by inserting bα
and bβ in (11) as follows

R̂γ = 1 − γð Þ−1 log bβγ−1bα1−γB γ −
γbβ + 1bβ , γ + γbβ −

1bβ
 ! !

:

ð29Þ

The other entropy estimators, indicated by HĈγ, Âγ, T̂γ

, Â1γ, and Â2γ, may be obtained in a similar fashion.
The preceding theoretical results may be specialized in

two cases; firstly, ML estimators of α, β, Rγ,HCγ, Aγ, Tγ,A
1γ, and A2γ are produced when r1 = r2 =⋯ = rm−1 = 0 and
rm = n −m, via T2C. Second, for r1 = r2 =⋯ = rm−1 = 0 and
rm = 0, we get the ML estimators of population parameters
as well as the proposed entropy measures.

The asymptotic normality of ML estimation may be used
to determine the asymptotic 100(1-v) confidence intervals
(CIn) for the parameters as

bα ± Zv/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var bαð Þ

q
, bβ ± Zv/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var bβ� �r

: ð30Þ

Also, the asymptotic 100(1-v) CIns for entropy measures
are given by

R̂γ ± Zv/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var R̂γ

� �q
,HĈγ ± Zv/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var HĈγ

� �q
, Âγ

± Zv/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Âγ

� �q
, T̂γ ± Zv/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var T̂γ

� �q
,

Â1γ ± Zv/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Â1γ
� �q

, Â2γ ± Zv/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Â2γ
� �q

, ð31Þ

where ZV/2 is standard normal and (1-v) is the confidence
coefficient.

4. Simulation and Real Data Outcomes

The challenge in this section is to analyze the outcomes of
the numerous entropy estimations stated before. To evaluate
the behavior of the suggested entropy measures and to ana-
lyze the statistical performances of the estimators under
PT2C, a Monte Carlo study is used. An actual data is also
examined for demonstration purposes. For calculations, the
statistical programming language R will be used in this
study.

4.1. Simulation Study. The effectiveness of the approaches
recommended of entropy estimation using Monte Carlo is
compared using a simulated exercise. Six entropy estimates
are calculated using the Monte Carlo process. For the ML
estimates (MLEs), one may generate 1000 data from the
LLD with the following assumptions:

(1) Presume the parameters of the LLD in the coming
situations:α = 0:5, β = 1:5

(2) Assume two values for the constant γ = ð0:5, 1:5Þ
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(3) Sample size is n=60 and number of observed failures
are m=10, 20, 30.

(4) Removed items rj are assume the accompanying:

Scheme I: r1 = r2 −⋯ = rm−1 = 0, rm = n −m:
Scheme II: r1 = r2 −⋯ = rm−1 = rm = n −m/m:
Scheme III: r1 = n −m, r2 −⋯ = rm = 0:
Table 1 shows the patterns that were eliminated for each

suggested schemes. Note that the first scheme (Scheme I) is a
particular instance of PT2C, which is the most common
T2C. Another, particular case is considered when n =m =
60 which leads to a complete sample.

According to the generated data, MLEs are computed
under the above assumptions using PT2C. When getting
MLEs, keep in mind that the initial estimate values are
treated the same as the real parameter values. These values,
MLEs, are then plugged-in to calculate the desired entropy
estimates.

All the average entropy estimates, relative biases (Rbias),
associated mean squared errors (MSEs), corresponding aver-
age interval lengths (AIL), and coverage probabilities (CPs)
for all six entropy methods are reported in Table 2 forγ = 0:5
and in Table 3 forγ = 1:5: Also, the results of the complete
sample case are reported in Table 4 for both values of γ:

From tabulated values, it can be noticed that:

(i) Higher values of m lead to a decrease in Rbias, MSE,
and AIL for all different schemes of removing items
and all different entropy methods.

(ii) All CPs are greater than 93% for all different
schemes of removing items and all different entropy
methods.

(iii) The increase in the constant term γ leads to a
decrease in estimates of all different entropy
methods.

4.2. Real Data Application. A real data set is analyzed for
illustrative purposes as well as to assess the statistical perfor-
mances of the MLEs for different entropy estimates in the
case of the LLD under different PT2C schemes.

The uncensored data set below corresponds to the remis-
sion periods (in months) of a random sample of 128 bladder
cancer patients reported in Lee and Wang [26]. The follow-
ing are the bladder cancer remission times:

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23,
3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09,
9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24,
25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81,
2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32,
7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66,
15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01,
1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33,
7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36,
1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85,
8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02,
3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07,
21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69, 5.49.

We first check whether the LLD is suitable for analyzing
this data set. We report the MLEs of the parameters and the
value of the Kolmogorov–Smirnov (K–S) test statistic to
judge the goodness of fit. The calculated K-S distance
between the empirical and fitted LLD distribution is 0.0440

and its p-value is 0.9667 where bα = 6:0978 and bβ = 1:7160
which indicate that this distribution can be considered an
adequate model for the given data set.

From the original data, one can generate, e.g., three
PT2C samples with a number of stages m = 30 and removed
items r j are assumed to be as follows:

Scheme I: r1 = r2 −⋯ = rm−1 = 0, rm = n −m:
Scheme II: r1 = r2 −⋯ = rm−1 = rm = n −m + 1/m:
Scheme III: r1 = n −m, r2 −⋯ = rm = 0:
Also, we consider the complete case as n =m = 128. Two

different values of the constant are proposed: 0.5 and 1.5. In
Table 5, the MLEs of the parameters have been calculated
and then plugged into different entropy methods in the
proposed schemes for PT2C samples as in the given real data
set.

5. Summary and Conclusion

In this paper, we look at the estimation problem of certain
entropy measures for log-logistic distribution under the
PT2C scheme. Rényi entropy, Havrda and Charvat entropy,
Arimoto entropy, A-entropies, and Tsallis entropy are the
six entropy measures considered. The recommended
entropy measurement expressions are computed. The point
and two-sided approximate confidence intervals for the
recommended entropy measures are obtained using the
maximum likelihood procedure. To describe and compare
the behavior of estimator’s measures, a numerical evaluation
is done in terms of relative biases, associated mean squared
errors, average interval lengths, and coverage probabilities
under different censoring schemes as well as different sample
sizes. The suggested entropy estimates approach the real
values with decreasing censoring levels, as well as the accu-
racy of measurements increases with sample sizes. Finally,
an actual dataset was analyzed for demonstration purposes.
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