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Semifluoroalkyl triazole derivatives have been facilely synthesized by copper-catalyzed alkyne-azide cycloaddition reaction, which
can gelate some organic solvents at weight concentrations of down to 0.5 wt.%. The gelation abilities of triazole derivatives with/
without a semifluoroalkyl and an aromatic group were fully characterized. We found that triazole derivatives containing
semifluoroalkyl chains and aromatic groups are typically effective in forming supramolecular organogels. Moreover, the gelator
in ethyl acetate can solidify oil from an oil-water biphasic mixture for about 1min.

1. Introduction

The rapid development of industry and economy is associated
with many environmental disasters caused by oily wastewater
[1]. The oil spill, as an emergency, needs to be expedited han-
dling to decrease the irrecoverable damage to the ecosystem
because spilled oil quickly becomes the emulsion caused by
wave action to raise the jeopardy [2]. The most common
methods for cleaning oil spills such as absorption, bioremedi-
ation, dispersion, and solidification have proven to be incapa-
ble on different occasions due to their drawbacks [3, 4]. Proper
treatments have been developed to meet its requirements in
practical application in the oil spill recovery field [5–8].

Phase-selective gelators (PSGs), as a type of organic gela-
tor, can selectively solidify oils that is one of the most prom-
ising methods for oil spill recovery [9–13]. Although the
various types of PSGs have been developed through complex
synthetic routes [14, 15], it is necessarily focused on exploit-
ing PSGs in a fast and convenient way that can be fitted with
a broad range of applications [16]. As is known, the copper-
catalyzed azide-alkyne cycloaddition (CuAAC) is a broadly
applicable and easy-to-handle reaction in the arsenal of
organic chemistry [17, 18]. Based on our previous experi-

ence, perfluorinated/semifluorinated groups are constantly
employed in designing multifunctional materials for
enhancing self-assembly, such as bilayer formations in high
diluted conditions [19–23]. Herein, we report the semifluor-
oalkyl triazole derivatives synthesized by CuAAC reaction
(Scheme 1) as potential gelators or even PSGs.

To investigate the structure character, 1-semifluoroalkyl-
4-substituted-1H-1,2,3-triazole (1) and the corresponding
hydrocarbon derivatives 1-alkyl-4-substituted-1H-1,2,3-tri-
azole (2) were synthesized.

2. Materials and Methods

2.1. Materials and Chemicals. All commercially available
starting materials and reagents were used without any puri-
fication. The distinction between dimethyl silicone oil
(DMS) and methyl silicone oil (MS) is viscosity 1000 and
500mPa.s at 250°C, respectively. The reaction mixture was
magnetically stirred and monitored by TLC. NMR spectra
were recorded on Bruker AV-III 400MHz NMR spectrome-
ter (400MHz for 1H, 101MHz for 13C, and 376MHz for
19F). Chemical shifts of these spectra are reported in parts
per million (ppm) downfield relative to the internal
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standard, tetramethylsilane (TMS). Coupling constants are
reported in hertz (Hz). Scanning electron microscope
(SEM) images were observed with a JEOL JSM-6510LA.

2.2. Sample Preparations and Tests for Gelation. To avoid
evaporating the liquid components, we prepared gels in a
sealed 5mL vial for most studies. Weighed quantities of a
gelator (ca. 10-20mg) and a liquid were heated until a solu-
tion was obtained. The vials were then kept at room temper-
ature for a certain period; we deemed them as gels, then the

samples were not visually phase-separated and did not flow
perceptibly when the vessels were inverted.

3. Results and Discussion

The gelation behaviors of the compounds were examined in
some solvents shown in Table 1. Compounds 1 and 2 dis-
solved well in DMF, THF, and ethyl acetate at 5wt.%. Com-
pound 1-10 formed organogels in DMS, MS, mineral oil,
paraffin, polyethylene glycol-400 (PEG-400), and DMSO,
where minimum gelation concentrations (MGCs) were 2.5,
4.0, 1.0, 3.0, 1.5, and 3.0wt.%, respectively. On the other
hand, compound 2-10 dissolved in MS and DMSO at
5.0wt.%. At the same time, compound 1-Ph also formed
organogels in DMS, MS, mineral oil, paraffin, PEG-400,
and DMSO, while compound 2-Ph dissolved in DMSO at
5.0wt.%, too. The results mean that the semifluoroalkyl
chain could enhance gelation ability. Notably, the MGCs of
polar aprotic solvents PEG-400 prepared from compounds
1-10 and 2-10 were lower than compounds 1-Ph and 2-Ph.
We believe that these tendencies are induced by the differ-
ence in self-assembly modes among semifluoroalkyl chain,
alkyl chain, and aromatic groups in organogels.

The Tgel−sol of DMS gels and PEG-400 gels, plotted
against the concentration of compounds 1 and 2, is shown
in Figure 1. Tgel−sol of organogels formed by compound 1
are higher than those of compound 2. The thermostabilities
of DMS organogels formed by compounds 1 and 2 with the
phenyl group are higher than those of the decyl chain as a
terminal group, while the thermostabilities of PEG-400 orga-
nogels formed by compounds 1-Ph and 2-Ph are lower than
those of the decyl chain. The results indicated that the ther-
mostability of organogels could be formed by employing a
semifluoroalkyl chain, no matter whether polar or nonpolar
solvent. At the same time, the role of the terminal group in
the thermostability of organogels possibilities depends on
the type of solvent. The results also indicated that the semi-
fluoroalkyl chain and the terminal group play an important
role in the thermostability of organogels.

The gelation phenomena are also confirmed utilizing a
scanning electron microscope (SEM) observation, and the
result of a gel formed by compound 1-Ph with mineral oil
at 5wt.% is shown in Figure 2. It is apparent from the figure
that three-dimensional (3D) nanofibers are assembled to
form the network structures with diameters of less μm order.
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Scheme 1: Synthetic scheme for compounds 1 and 2.

Table 1: Gelation tests and MGCs (wt.%) for 1 and 2.

Solvents
Compounds (wt.%)

1-10 1-Ph 2-10 2-Ph

Dimethyl silicone oil G (2.5) G (1.0) G (2.5) G (0.9)

Methyl silicone oil G (4.0) G (3.0) S (5.0) G (4.0)

Mineral oil G (1.0) G (0.5) G (4.0) G (4.0)

Paraffin G (3.0) G (3.0) G (3.0) G (3.0)

Polyethylene glycol-400 G (1.5) G (3.0) G (3.0) G (5.0)

DMSO G (3.0) G (5.0) S (5.0) S (5.0)

Deionized water P (5.0) P (5.0) Ins (5.0) Ins(5.0)
aG, S, P, and Ins indicated gel, solution, precipitated, and insoluble. Gelation
tests started from a gelator concentration of 5 wt.%.
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Figure 1: Plots of Tgel−sol vs. concentrations of compounds 1 and 2
in DMS organogels.
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To demonstrate compounds 1 and 2 may exhibit phase-
selective gelation ability, we took compound 1-Ph for further
study at 5wt.%. Deionized water (1.5mL, ca. 4 times organo-
gel’s weight) was added to a vial containing organogels
formed by compound 1-Ph in the gelation test. Organogels
became an isotropic liquid state (oil solution) and then
floated on the water’s surface during the heating process.
The oil solution was gelatinized again at room temperature.
Figure 2 shows a photograph of organogels that can suffer
their weight and 4 times their weight of deionized water.
Because PEG-400 and DMSO exhibit good solubility in
deionized water, compound 1-Ph could not gelatinize
PEG-400 or DMSO again from the aqueous solution. The
phase-selective gelation abilities of compounds 1-10, 2-10,
and 2-Ph were surveyed and showed similar phase-
selective gelation behaviors with compound 1-Ph.

A cosolvent is a popular approach to deal with the oil-
water biphasic system [24]. Herein, ethyl acetate as a suitable
cosolvent was selected from DMF, THF, and ethyl acetate.
The ethyl acetate solution of compound 1-Ph at 10wt.%
was added into the DMS-water biphasic system immediately
after preparing until the weight percentage of compound 1-
Ph in the organic layer decreased to 5wt.%. The DMS could
form into organogel in just minutes. The gelation process
was recorded as a video shown in the attached link at Sup-
plementary Materials. That means compound 1-Ph can have
the phase-selective property in the cosolvent method.

In conclusion, a new type of PSGs that can gelate some
organic solvents at weight concentrations of down to
0.5wt.% has been facilely synthesized based on semifluor-
oalkyl triazole derivatives. We found that triazole derivatives
containing semifluoroalkyl chain and aromatic groups typi-
cally form supramolecular organogels. Due to the simple
synthesis method and the effective phase-selective perfor-
mance, semifluoroalkyl triazole derivatives can be probably
be used for oil spill recovery from the oil-water biphasic
system.
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