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The new catalyst (La/Bi2S3) applies for the photodegradation of Acid Yellow 42 (AY42) dye under visible light in this study. The La/Bi2S3
material is the motivating catalyst due to the excellent ability of Lanthanum (La) to increase the adsorption capacity and electron-hole
separation of Bi2S3 for enhancing the degradation of AY42. The characterization analysis of the prepared material confirms a successful
synthesis using the hydrothermal method. The efficiency of photodegradation AY42 using La/Bi2S3 is higher than pure Bi2S3. La on
Bi2S3 (doped at 3%), which is devised on adsorption (40.24%) and photodegradation (51.86%), has the best degradation efficiency
(92.1%). The trapping experiment and the analysis of electron spin resonance (ESR) spectra explain that the hydroxyl radical is the
most active species in this photocatalytic process due to the total degradation efficiency decreasing from 92.1% to 57.16% by the
scavenger using isopropyl alcohol (IPA). The hole (h+) shows its importance in the photodegradation of AY42 by detecting that OH-

is the intermediate species. The new material (La/Bi2S3) also shows excellent photostability in the reusability test. Finally, the result
confirms that La is a suitable doping metal for Bi2S3 and is interesting for practical application under visible light. The new catalyst
(La/Bi2S3) applies for the photodegradation of Acid Yellow 42 (AY42) dye under visible light in this study. The La/Bi2S3 material is
the motivating catalyst due to the excellent ability of Lanthanum (La) to increase the adsorption capacity and electron-hole
separation of Bi2S3 for enhancing the degradation of AY42. The characterization analysis of the prepared material confirms a
successful synthesis using the hydrothermal method. The photodegradation efficiency of AY42 using La/Bi2S3is higher than pure
Bi2S3. The doping of 3% weight of La on Bi2S3 shows the optimum degradation efficiency of 92.1%, devised on adsorption (40.24%)
and photodegradation (51.86%). The pure Bi2S3 (46.7%) contains 17.1% of adsorption and 29.6% of photodegradation. The trapping
experiment and the analysis of electron spin resonance (ESR) spectra explain that the hydroxyl radical is the most active species in
this photocatalytic process due to the total degradation efficiency decreasing from 92.1% to 57.16% by the scavenger using isopropyl
alcohol (IPA). The hole (h+) shows its importance in the photodegradation of AY42 by detecting that OH- is the intermediate
species. The new material (La/Bi2S3) also shows excellent photostability in the reusability test. Finally, the result confirms that La is a
suitable doping metal for Bi2S3 and is interesting for practical application under visible light.

1. Introduction

Dye degradation is among the most complicated tasks for
textile processing plants. Hundreds of synthetic colors are
employed in the industry, some carcinogenic [1]. Among
these dyes, azo dyes are considered the most persistent and
dangerous industrial pollutants due to their ability to con-

taminate natural water [2]. It is the most utilized dyes,
accounting for more than 60% of all commercially available
dyes [3, 4]. Among the azo dyes, Acid Yellow 42 (AY42) is a
commercial dye mainly used for wool dyeing, silk, glue
printing, polyamide fiber dyeing, leather shading, inks for
printing, food colorants, hair dye, tattoo inks, cosmetics, tex-
tiles, and colors for drugs [5]. So far, only a few preliminary
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studies have been conducted about a treatment method for
the degradation of this target pollutant (AY42). The miner-
alization degradation of AY42 demonstrated a high degrada-
tion by adsorption [6]. However, the calcination method is
not environmentally friendly as it produces air pollution
and consumes a lot of energy [7]. It uses turnip peroxidases
and enzymes that require the 1-hydroxy benzotriazole
(HOBT) to decolorize most of the acid dyes [8].

Importantly, photocatalysis exhibits a successful way of
treating industrial effluent [9]. The photocatalyst is rapidly
expanding and is significantly efficacious due to the number
of benefits, including environmental protection and total elim-
ination of pollution [10]. The photocatalytic process promotes
the oxidation and removal of most organic compounds,
potentially allowing the complete elimination of organic con-
taminants [11]. The types of semiconductor catalysts, such as
TiO2, WO3, ZnO, SnO2, CeO2, Bi2S3, and BiVO4 photocata-
lysts, are commonly used [12] but are limited by large band-
gaps or fast recombination of electron-hole pairs. Recently,
more attention has been received from visible light photocata-
lysts, specifically materials containing bismuth [13]. Bismuth-
based photocatalysts are commonly studied as visible photoca-
talysts guided by light, such as Bi2O3, BiVO4, Bi2WO6, Bi2S3,
and Bi-ZnWO4 [14, 15]. Amid the catalysts, Bi2S3 is among
the most efficient semiconductors and draws broad attention
to Schottky diode [16], solar cells [17], sensors [18], superca-
pacitor electrodes [19], and thermoelectric devices [20]. Bi2S3
has a narrow bandgap of 1.3 eV and an excellent absorption
coefficient for photocatalytic activities under visible light
[21]. The photocatalytic of Bi2S3 is restricted due to the quick
recombination of photoinduced electron-hole pairs [22].

According to the above limitation, the new dopant material
(Lanthanum) is used to improve the ability of Bi2S3 in photo-
catalytic activities in this study. Due to the excellent command
of lanthanum (La), which enhances the capacity of thematerial,
some preview studies mentioned that La has a synergistic effect
and influence to capture photoinduced electrons [23, 24] that
are used to enhance the redox, textural, and structural aspects
of the material [25]. In addition, La enhances the catalyst’s abil-
ity and modifies the material’s structure to demonstrate a high

light absorption spectrum and to increase the electron-hole
separation ability [23, 26, 27]. In the present study, La/Bi2S3
composite was prepared by hydrothermalmethod, and the per-
formance of La/Bi2S3 was evaluated by different kinds of exper-
iments, such as photocatalytic degradation activities of AY42,
the effect of dyes concentration, catalyst amount, recycle test,
and trapping test. La inhibits the recombination of photogener-
ated electron-hole pairs of Bi2S3 and improves the photodegra-
dation performance of the prepared material. Thus, the La/
Bi2S3 composite shows a great perspective and contribution
to increasing photocatalytic activity under visible light.

2. Experimental Section

2.1. Reagents and Materials. This experiment used various
chemicals: Bismuth nitrate (Bi (NO3)3·5H2O) (mass fraction
0.990) was extended in China, thiourea (CH4N2S, China,
99.9%), isopropyl alcohol (IPA, Merck, 99.99%), potassium
iodide (PubChem CID: 4875), and Acid Yellow 42 (Pub-
Chem CID: 228665). Table S1 details the structure of
AY42 dye and demonstrates its degradation ability by the
photocatalytic process due to its high carbon content. The
ultra-pure water system of PURELAB flex 3 is used as the
source for deionized water.

2.2. Preparation of Bi2S3 and La/Bi2S3. The synthesis of Bi2S3
has followed the previous study [28]: 3.881 g of
Bi(NO3)3.5H2O diluted in 100mL of double-distilled water
(DDW) and 20mL of DDW mixed with 0.90 g of thiourea
for 20min separately; then, the solution of thiourea was
dropped into the solution of Bi(NO3)3.5H2O and then mixed
at 60 °C for 30min. Finally, the yellow solution was mixed at
room temperature for 60min and inserted in an autoclave at
150 °C for 24 hours. Afterward, the solid was recovered, fil-
tered, and washed four times using DDW and ethanol ratio
5 : 1 to remove all the impurities. The final Bi2S3 dried at
60 °C for 10 hours. Furthermore, Bi2S3 calcinated for 2 hours
at 400 °C to evaporate all the water in the material’s pores.

La/Bi2S3 was synthesized by adding a different percentage
of La weight % (1, 3, 5, and 7) using La(NO3)3.6H2O as a

Bi (NO3)3.5H2O
+ H2O

NH2CS NH2 + H2O

Hydrothermal,
150 °C for 24 h

La (NO3)3·6H2O

Mixed for 1 hMixed for 1 h

Dried 80 °C for 6 hours

Then calcination at
400 °C for 2 hours

Washed and filtratedMixed for 1 h

Bi2S3

40 ml

40 ml

1

1
1

1

Figure 1: Synthesis of La/Bi2S3 composites.
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precursor into the mixture solution of Bi2S3. After achieving
room temperature, it was stirred for 60min and finally mim-
icked the exact condition of the hydrothermal, washing, dry-
ing, and calcination process to acquire La/Bi2S3. Figure 1
shows the synthesis procedure to synthesize the La/Bi2S3.

2.3. Characterization Techniques. Scanning electron micros-
copy (SEM) was used to observe the surface morphology of
the material. The X-ray diffraction (XRD) pattern was studied
to analyze the phase composition and crystalline structure.
FT/IR-4700 FTIR Spectrometer from JASCO was used to

determine the function group and the bonding materials.
The instrument JEM 1400 JEOL was used to measure trans-
mission electron microscopy (TEM) and observe the catalyst’s
morphology. The electron spin resonance (ESR) was analyzed
using a 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) agent.

2.4. Photocatalytic Degradation Activities. The research on
photodegradation of AY42 under visible light using La/
Bi2S3 was studied at the different weight percentages of La/
doped on Bi2S3 (1% La/Bi2S3, 3% La/Bi2S3, 5% La/Bi2S3,
and 7% La/Bi2S3) and was tested using 0.02 g of catalysts in
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Figure 2: The XRD analysis of as-prepared materials.
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all experiments. For all experiments, a beaker glass was
applied as a reactor, and 60mL of AY42 solution was intro-
duced at initial concentrations of 10mgL−1. The liquid solu-
tion was placed in the dark for 30min for adsorption and
desorption of the catalyst. Finally, the photocatalytic activity
was irradiated under visible light for 75min, and the dye was

analyzed at the interval of 15min. A light emitting diode
(LED) lamp of 42 volts with 7000 lm, and the wavelength
(λ)≥420nm was applied for the visible light source, and a
UV-vis spectrometer measured AY42 removal at 410nm
wavelengths. All the photocatalytic measurements were per-
formed at room temperature and repeated twice to calculate

(a) (b)

(c) (d)

(e)

Figure 4: SEM images analysis of Bi2S3 (a), 1% La/Bi2S3 (b), 3% La/Bi2S3 (c), 5% La/Bi2S3 (d), and 7% La/Bi2S3 (e).
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the error bars in the result of the experiment. The photocat-
alytic degradation of AY42 (η) is obtained by C/C0, where
C0 is the initial optimum absorbance (λ) of AY42
(λ = 410 nm) of the UV-vis and C is the outlet absorbance
at any time. A trapping test was realized by adding different
scavengers of 10-3M into the solution of AY42 content 0.02 g
of the catalyst. Potassium dichromate (K2Cr2O7), isopropyl
alcohol (IPA), and potassium iodide (KI) were applied as
effective scavengers to control the photogenerated electron,
hydroxyl radical, and the hole, respectively. The recycle test
was realized by reusing four times the same material by
selecting the best sample to analyze the stability of the
as-prepared material. The kinetics first-order was studied
using ln ðC/C0Þ = kt to measure the degradation rate of
the pollutant and calculated using the absorbance of
AY42 at the initial C0 after getting the adsorption and
desorption in the dark and also the final concentration
of AY42 at time t (min).

The degradation capacities of AY42 under visible light
over La/Bi2S3 material are observed by calculating in the fol-
lowing equation:

qe = C0 − Ceð Þ × V
m : ð1Þ

qe ðmg g−1Þ is the degradation capacity of the catalyst. C0
and Ce (mgL-1) are the initial and equilibrium concentra-
tions of the AY42, respectively. V (L) is the volume of the
AY42, and m (g) is the weight of the catalyst.

3. Results and Discussion

3.1. Analysis of XRD Pattern. The analysis of the XRD pat-
tern of the Bi2S3 and La/Bi2S3 composites presented in
Figure 2 exhibits the crystalline structure. The pure Bi2S3
showed various peaks at 22.41°, 23.69°, 24.9°, 25.8°, 28.65°,
30.39°, 31.86°, 39.88°, 45.7°, 46.67°, 50.98°, 52.82°, 59.10°,
and 63.09° which can be related to the diffraction peaks at
(220), (101) (130), (310), (211), (221), (410), (430), (440),
(501), (160), (312), (640), and (152) planes of phase, indicat-
ing the orthorhombic Bi2S3 (JCPDS No. 170320) crystalline
structure. The XRD analysis proved that the presence of La
in Bi2S3 decreased the crystallite size of the catalyst. For fur-
ther studies, the particle size was analyzed to confirm that
the reduction of the crystallite size developed when La-
doped the material. However, adding La increased the inten-
sity of the (211) plane of Bi2S3 at the diffraction peak 2 =
28:65 ° . It indicated the bias of orientations of these crystal-
lographic planes [29]. The 211 facets were the most domi-
nant in Bi2S3, suggesting the formation of microsphere

Bi

S

La/Bi2S3

La

Figure 5: Analysis of energy-dispersive spectroscopy (EDS) of La/Bi2S3 composites.
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particles [30]. This result shows that the excess amount of La
could harm the photocatalytic activities of La/Bi2S3.

3.2. FTIR Analysis of Bi2S3 and La/Bi2S3. Figure 3 shows the
FTIR analysis of Bi2S3 and La/Bi2S3. The vibration bands
around 1076 cm−1 and 1100 cm−1 showed evidence of the
apparition of Bi2S3 [28, 31] and ascribed to Bi-S bonds
[21], respectively. The band around 1620 cm−1 is related to
the (O-H) bending vibrations of the molecularly adsorbed
water [32]. The peak of about 2380 cm−1 is responsible for
the stretching vibrations of C–H [33]. The wavelength at
3400 cm−1 due to the O-H vibration is related to the water
inside the samples [21]. The bands at 1076-1100 cm-1

became stronger as the amount of lanthanum in the com-
posite increased. The modification of the bands’ vibration
of the Bi2S3 might explain the presence of La in the compos-
ite, and the XRD analysis could also confirm it.

3.3. Morphology of Bi2S3 and La/Bi2S3 Composites. Figure 4
shows the results of the SEM image of Bi2S3 and the different
composites of La/Bi2S3. The pure microspheres Bi2S3
(Figure 4(a)) showed a particle size reduction while increas-
ing the amount of La in the composite. Due to the material’s
particle size reduction, an excessive amount of La can be
depicted on the surface of Bi2S3 in the images of 5% and

7% percent La/Bi2S3, respectively. The high percentage of
La in the composite could present a negative effect by reduc-
ing the active species and providing the recombination elec-
tron hole of pure Bi2S3 photocatalyst.

Material processing and degradation reports of AY42
show that the particle size distribution of Bi2S3 and La/
Bi2S3 grades was an essential metric. The particle sizes of
Bi2S3 and La/Bi2S3 materials were analyzed using a Nano
Zetasizer ZS by Malvern Panalytical. The average size of
Bi2S3, 1% La/Bi2S3, 3% La/Bi2S3, 5% La/Bi2S3, and 7% La/
Bi2S3 were 4.88, 3.22, 2.05, 1.08, and 1.63μm, respectively.
The particle size result confirms that the XRD pattern of
Bi2S3 changes significantly with the presence of La due to
the significant decrease of the particle size of pure Bi2S3 with
the presence of La. The SEM images present that the addi-
tion of La-doped of Bi2S3 decreased the crystallites of the
compound and might increase the active site of the material
for better photocatalytic activities in the degradation of
AY42 under visible light.

The elemental mapping analysis shown in Figure 5 was
measured to support the SEM images to confirm the pres-
ence of all elements in as-prepared material. The blue color
was represented by bismuth (Bi), yellow was the sulfur (S),
and purple by the presence of La in the composites. The
mixed colors indicated that all the elements (Bi, S, and La)

200 nm

(a)

100 nm

(b)

200 nm

(c)

100 nm

(d)

Figure 6: Image analysis TEM of Bi2S3 (a, b) and 3% La/Bi2S3 (c, d).
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were present in the map of the SEM image, which confirmed
the synthesis of La/Bi2S3 composite by the hydrothermal
method. In the analysis result of the composite, the impurity
detected was lower. So the composite morphology confirmed
the successful synthesis of La/Bi2S3 material for photocata-
lytic activity.

The TEM analysis was studied by pure Bi2S3 and 3% La/
Bi2S3. TEM analysis for 3% La/Bi2S3 shows evidence that La
modified the morphology of Bi2S3 and the smaller particle
size is formed for the benefits of the photocatalytic perfor-
mance of the material. As a result, La worked to reduce the
particle size of pure Bi2S3. The morphology of the prepared
samples of pure Bi2S3 (Figures 6(a) and 6(b)) appearing in
one block finally changed by adding La to the material, as
shown in Figures 6(c) and 6(d) to improve the surface of dis-
tribution for more sites of active species to achieve a better
photocatalytic activity of the material, so the TEM images
proved the presence of La in the Bi2S3 material.

3.4. Photodegradation of Acid Yellow 42 under Visible Light
by La/Bi2S3. The photodegradation experiment in
Figure 7(a) reports a different percentage weight of La-
doped on Bi2S3. The degradation of the pollutant was per-
formed in the dark and the light for a better understanding
of the catalyst. The result also shows that the catalyst also
adsorbs a part of the AY42 due to the pores on the surface
of the catalyst afterward, the photodegradation in the pres-
ence of the visible light. The total performance of pure
Bi2S3, 1% La/Bi2S3, 3% La/Bi2S3, 5% La/Bi2S3, and 7% La/
Bi2S3 resulted into 46.7%, 63.4%, 92.1%, 77.7%, and 66.3%,
respectively. In this study, we found that the photodegrada-
tion increased when the amount of La-doped on Bi2S3 was
increased from 1% to 3%. The decreasing efficiency of
AY42 was detected by increasing the percentage of La
(>3%) doped on Bi2S3. Since the absorbing and scattering

catalyst photon increased by an excess of La in the photocat-
alytic process [27], the degradation rates were calculated by
applying the kinetic first order (Figure 7(b)). The kinetic
study shows that the degradation rate of the outstanding
samples (3% La/Bi2S3) was better than the pure Bi2S3. It is
explained that the presence of La also enhanced the removal
rate under visible light. The degradation capacity was calcu-
lated to evaluate the mass in milligram (mg) of AY42 dyes
that a specific weight can degrade in gram (g) of La/Bi2S3
catalyst under visible light. The calculation analysis is shown
in Figure 7(c) that the degradation capacity of Bi2S3, 1% La/
Bi2S3, 3% La/Bi2S3, 5% La/Bi2S3, and 7% La/Bi2S3 was
14.01mg g-1, 19.02mg g-1, 27.63mg g-1, 23.31mg g-1, and
19.89mg g-1, respectively; the percentage of error bars of
the photocatalytic degradation of AY42 was around ±2.3%
to ±3%. The degradation capacity of AY42 over La/Bi2S3
was compared with some previous studies in Table 1.

The recycle test was studied to analyze the photocata-
lytic stability of La/Bi2S3. La/Bi2S3 3% was selected as the
focus sample; as we can denote in Figure 7(d), there is
no difference from the first to the third that was recycled,
and it slightly decreased with the difference value of 7%
between the first and the fourth. This decrease results from
the remaining pollutant on the catalyst’s surface during the
adsorption process. Therefore, the material La/Bi2S3 proved
to show reasonable stability over the degradation of AY42.
Besides the performance of La/Bi2S3 catalyst, it was also
very competitive compared to some previous studies in
Table 1 using Bi2S3 as base catalyst under visible-light-
induced photodegradation of organic pollutant in the
wastewater, and mostly better than the previous studies.
It is concluded that La is an excellent doping metal for
Bi2S3 in photocatalytic activities and shows the first appli-
cation of the photocatalyst in degrading AY42 dye under
visible light.
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3.5. Effect of AY42 Dye Concentration. Figure 8 shows the
result of the experiment of the effect of AY42 dye concentra-
tion realized with 20mg of 3% La/Bi2S3 of catalyst. The
removal of the efficiencies of 10, 20, 30, 40, and 50 ppm were
92.1%, 79.4%, 61.3%, 44.7%, and 33.2%, respectively, and the
error bars were found around ±1.8% to ±2.5%. The degrada-
tion efficiencies decreased by increasing the concentration of
AY42. The decrease in removal effectiveness of degradation
is caused by a lack of active sites with a small amount of cat-
alyst, and a lack of light penetration depth combined with
the catalyst at the bottom of the reactor for the pollutant’s
photodegradation activities under visible light.

3.6. Effect of Catalyst Amount. Figure 9 shows the analysis of
different catalyst amounts for the photocatalytic degradation
removal of AY42 with high concentrations. In this experi-
ment, 50 ppm of AY42 was selected with different catalyst
amounts of 20, 40, 60, 80, and 100mg with a degradation
efficiency of 33.2%, 48.1%, 55.3%, 53.1%, and 49.5%, respec-

tively. The result shows that the degradation efficiency
increased by increasing the catalyst amount because of the
active surface sites. However, the excess amount of catalyst
reduced the degradation efficiency of AY42 due to the
increase of the catalyst amount, which may decrease the light
penetration and thus decrease the light scattering due to the
blurry solution.

3.7. Mechanism of Degradation of AY42. In the mechanism
process of the degradation of AY42, K2Cr2O7, IPA, KI, and
3% La/Bi2S3 were used to scavenge the electron, hydroxyl
radical, and hole, respectively, in the trapping test
(Figure 10(a)). This study looked into the species that are
responsible for degrading AY42. The result denoted that
the La/Bi2S3 electron was coupled with oxygen to create
superoxide, which reacted with AY42 to degrade it. Addi-
tionally, the role of the Lanthanum ion (La3+) was utilized
to improve the photogenerated electron of Bi2S3 and to
determine the quick recombination of electron-hole pairs

Table 1: Comparison of photodegradation of dyes based on Bi2S3 and Lanthanum under visible light.

Catalyst Pollutants
Concentration

(ppm)
Catalyst

amount (mg)
Volume
(ml)

Removal
(%)

Mg/g
Time
(min)

Mg/g/
min

References

Bi2S3/Bi2WO6 Phenol 20 0.05 50 51.6 10.32 120 0.086 [37]

Cu/Bi2S3
Methylene

blue
20 0.01 30 90.7 54.42 200 0.272 [38]

BiPO4/Bi2S3
Methylene

blue
10 0.05 100 80 16 180 0.089 [39]

Bi2S3/Bi2O3/BOC Methyl orange 20 0.05 100 99 39.6 60 0.66 [40]

SnO2/Bi2S3/BiOCl–
Bi24O31Cl10

Rhodamine B 10 0.02 60 80.8 24.24 180 0.135 [28]

Bi2S3/Bi2Sn2O7 Rhodamine B 5 0.05 50 94.4 4.72 360 0.013 [41]

La/Bi2S3 Acid yellow 42 10 0.02 60 92.1 27.63 75 0.368 This study
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Figure 8: Effect of AY42 dyes concentration.
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for improved photodegradation of AY42. The trapping test
shows that the degradation efficiency of the AY42 scavenger
by K2Cr2O7 was decreased from 92.1% to 77.41%, explaining
that the electrons were not the most crucial key in the degra-
dation process. In this scavenger, the degradation efficiency
decreased from 92.1% to 57.16% in the scavenger by IPA.
The material’s noticeable drop in photocatalytic activity after
adding IPA is due to both radical •OH radicals created
directly and radical •OH radicals formed via intermediary
processes that were repressed [34], which is the principal
active species in the photodegradation activity. The hole
(h+) shows its importance in the degradation of AY42 and
explains that OH- was the intermediate oxidative species.

Furthermore, the ESR spectra of 3% La/Bi2S3
(Figure 10(b)) during 12min under visible light also con-
firmed that the hydroxyl radicals were the main factor for
the degradation of AY42. The DMPO-ESR analysis also
demonstrated the detection of the signal when the light
was turned on. However, there is almost no signal projected
in the dark. This mechanism confirms that the photodegra-
dation of AY42 by the superoxide (•O2) and hydroxide
(-OH) under visible light was successfully applied.

The photodegradation mechanism of AY42 present in
Figure 11 is as follows: Under visible light irradiation, the
excited electrons move from the valence band (VB) to the
conduction band (CB), and the holes (h+) stay in VB, as
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shown in Equation (2). Then, the electrons (e-) reacted with
oxygen to produce •O2

− (Equation (3)). La was used to sup-
port the CB to avoid the recombination of the photogener-
ated e- and h+ of the catalyst. Adding La species to Bi2S3
can significantly increase the formation of •O2

− radicals
and the efficient separation of photogenerated electron-
hole pairs, resulting in improved photocatalytic AY42 elim-
ination [35]. The H2O continually reacted with O2

− to pro-
duce •OH radicals in Equations (4)–((6)()). h+ combines
with OH− from Equations (4) and (6) for the formation of
OH; the holes subsequently reacted with water (Equation
(7))). The radicals (O2

− and OH) were keys to the degrada-
tion of AY42, as shown in Equations (8) and (9) [36].

La/Bi2S3 + hv⟶ La/Bi2S3 e−CB + h+VB

� �
, ð2Þ

O2 + e− ⟶ •O−
2 , ð3Þ

H2O + •O−
2 ⟶OH− + •HO2, ð4Þ

H2O + •HO2 ⟶
•OH +H2O2, ð5Þ

e− +H2O2 ⟶OH− + •OH, ð6Þ
H2O + h+ ⟶H+ + •OH, ð7Þ

AY42 + •OH ⟶ CO2 +H2O, ð8Þ
•O2 + AY42⟶ CO2 +H2O: ð9Þ

4. Conclusion

This present study proved the hydrothermal method’s suc-
cessful synthesis of La/Bi2S3 material and confirmed by the
EDS analysis. The XRD and the particle size analysis showed
that the presence of La decreased the crystallites of the Bi2S3

material and the La/Bi2S3 is indicated as high photodegrada-
tion of AY42 dye under visible light. The optimum photo-
catalytic activities were detected at 3% La/Bi2S3, two times
more than the pure Bi2S3. The trapping test and ESR spectra
analysis proved that the hydroxyl radical was the most effi-
cient active species in this photocatalytic process and the
h+ showed its importance in the degradation of AY42 by
detecting that OH- as the intermediate species for the degra-
dation of AY42. The 3% La/Bi2S3 could be considered a sta-
ble catalyst due to the low percentage of its removal
efficiency after reusing this composite four times for the
photocatalytic degradation of AY42. Finally, the whole
experiment concluded that La greatly influenced a vital role
in Bi2S3 by modifying the material’s structure for the optimi-
zation of degradation of AY42 under visible light.
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