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This paper deals with two-dimensional steady boundary layer flow, heat, and mass transfer characteristics of micropolar nanofluid
past on exponentially stretching/shrinking surface. The effect of different physical parameters like magnetic field, buoyancy,
thermal radiation, and connective heat transfer are examined. Furthermore, similarity solutions are obtained by similarity
transformation on the governing system of partial differential equations. The shooting method with help of the Maple software
is used to achieve the numerical solutions of the equations. For the different ranges of the applied parameters, triple solutions
are obtained for both cases of the surface. In view of the triple solutions, stability analysis is performed by bvp4c in the
MATLAB software, where only first solution is found feasible which is discussed. The main findings of the first solution
indicate the skin friction, drag force, heat, and mass transfer rates are increasing for the λ > 0 and decreasing for λ < 0 as the K
is enhanced. The velocity profiles decrease with increase in magnetic, slip velocity, and suction parameters. The temperature
profiles increase with increase in magnetic, thermophoresis, thermal radiation, and Brownian motion parameters, whereas
concentration profiles reduce with increase in Schmitt number and Brownian motion.

1. Introduction

The study of non-Newtonian fluid flows have gained much
importance, because of the common Newtonian fluids may
not completely satisfy the properties of the fluid flow in
many industrial applications, examples of such fluids are
biological fluids, polymeric fluids, fluids containing addi-
tives, liquid crystals, and paint colloidal solutions. Moreover,
the class of the non-Newtonian fluids containing different
kinds of complex properties are Casson fluids, Maxwell
fluids, and micropolar fluids. The micropolar fluid intro-
duced by Eringen [1] possesses a microscopic effect due to
the microstructure and micromotion of particles present in
fluid. These microstructure particles are of different shapes
which rotate independently to the motion of the fluid perti-

cles (Anwar et al. [2]). The system of the micropolar fluid
flow equations contains a microrotating vector besides the
classical velocity vector. These fluids contain smaller rigid
particles which rotate about the centroid of volume particles
that predicts the flow behaviors at rotation and microscale
independently that is defined by a microrotation vector.
Therefore, micropolar fluids are very important in fluid
dynamics, especially in studying some flows around some
important surfaces such as stretching surfaces or shrinking
surfaces. In this regard, MHD micropolar fluid flow on the
inclined plate was investigated by Kasim et al. [3]. The
micropolar fluid flow on the inclined surface with different
physical parameters was also studied by Das [4]. Srinivasa-
charya and Bindu [5] examined the entropic generation of
the micropolar fluid with parallel plates on the inclined
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channel. Rahman et al. [6] examined the heat flux process in
the micropolar fluid with incorporation different kinds of
the fluid properties. Dero et al. [7] examined MHD micro-
polar nanofluid flow on exponential shrinking/stretching
surface with radiation, Brownian motion, and thermophor-
esis effects. Srinivasacharya et al. [8] examined double diffu-
sion impacts on the micropolar fluid flow on a slanted sheet.
In [9], the authors studied peristaltic flow of nanofluids
through a tapered channel with a porous medium.

Whereas magnetohydrodynamics (MHD) is concerned
with physical and mathematical scaffold which shows mag-
netic dynamics in the electrical conducting fluid, the applica-
tions of magnetohydrodynamics are especially used in the
modern industrial and engineering areas, such as in drawing
of the plastic wires and films, polymer extrusion in melt
spinning process, crystal growth, paper production and glass
fiber, fluid film in the condensations processes, manufactur-
ing in foods, electronic chips, electrochemical process, flow
through the filtering devices, and thermal energy storage.
Several investigators have worked on magnetohydrodynam-
ics flow overstretching surfaces by using different physical
parameters [10].

Moreover, nanotechnology has achieved much attention
of the investigators because of having many applications in
industrial and biological sciences. In industries, clay nano-
composites are used for the production of the impermeable
wrapping films, silver nanoparticles are particularly used
for productions of bins storage, while particles of the zinc
oxides can be used for protection of the materials from the
ultraviolet radiations and the carbon nanotubes pervaded
graphite are used for the productions of light tennis rackets.

In biological science, the investigators are busy developing
the nanocapsules for the injections replacement that can be
passed through the stomach and can accessed in the blood
stream easily, whereas nanoparticles’ antibacterial properties
make them fit to cut and stitch the bandages. The nanofluid
is a subclass of such a widely growing research field. Actu-
ally, nanofluids are engineered manufacturing fluids that
are made by suspensions of the smallest sized particles
(10−9 to 10−11m) in common traditional fluids. Choi [11]
called such flu as the fluids because of the addition of the
smallest nanosized particles. Numerous engineering prob-
lems are studied by many researchers for more than two
decades on the progress of nanofluids [12, 13], whereas the
extensive convective rate of the heat transfers in nanofluids
was studied by Buongiorno [14] by developing a two-phase
nanofluid model. Furthermore, the boundary layer nano-
fluid flow phenomena on the shrinking/stretching surfaces
have been discussed by many researchers [15, 16]. The
nanofluid stagnation point flow was considered by Nazar
et al. [17]. Kuznetsov and Nield [18] considered the bound-
ary layer flow of the nanofluid through a vertically moving
plate with buoyancy effect, while Chamkha et al. [19] con-
sidered mixed convective magnetohydrodynamics nanofluid
flow with buoyancy effect by using Buongiorno’s (2006)
model.

Motivated from the abovementioned work, two-
dimensional laminar magnetohydrodynamic boundary layer
flow of micropolar nanofluid on exponentially shrinking/
stretching surface with mixed convection, thermal radiation,
magnetic, Brownian motion, and thermophoresis parame-
ters has been studied. Furthermore, convective heat transfer
and porous medium are also taken into account. There has
been extension on the work done by Bidin and Nazar [20].
Their work was on the viscous fluid with unique solution
while the present work is much updated. The graphical
achieved results are used to study the influence of various
physical parameters on the velocity, microrotation, tempera-
ture, and concentration profiles. Few other interesting stud-
ies in this direction are given in [21–24].

To the best of the authors’ knowledge, such an attempt
on MHD mixed convection flow of a micropolar nanofluid
in the existence of the thermal radiation and magnetic field
on an exponentially vertical stretching/shrinking surface by
obtaining triple solutions with stability analysis has not been
tried before. The results are demonstrated graphically with
detailed discussion. It can be expected that the present
research work will prove helpful for the researchers which
are interested to study nanofluids particularly micropolar-
based nanofluids as well as the importance of the stability
analysis in case of the occurrence of multiple solutions,
where stability analysis decides about real and extraneous
solutions.

2. Problem Formulation

There is considered two-dimensional laminar magnetohy-
drodynamic (MHD) mixed convection flow, heat, and the
mass transfer of the micropolar nanofluid on the permeable
exponentially vertical shrinking/stretching surface with
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Figure 1: The flow model and the coordinate system.

Table 1: Comparison for the values of –θð0Þ at different values of
Pr, where Nt , Rd , and Nb are ignored.

Pr −θ 0ð Þ
Bidin and Nazar [20] Present results

1 0.9547 0.9551

2 1.4714 1.4713

3 1.8691 1.8692
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radiation effect. An electrically conducting nanofluid is con-
sidered with influence of the magnetic field BðxÞ which is
used perpendicular to the surface. The value of the Reynolds
number is negligible that is ignored. The flow is considered
along the x-axis perpendicular to the y-axis. The surface
velocity is considered as uwðxÞ =Uwe

x/L at y = 0. A graphical
presentation of flow model along the coordinate system is
presented in Figure 1.

Applying boundary layer approximations, the continu-
ity, momentum, microrotation, energy, and concentration
equations for the micropolar nanofluid flow of present study
are written as

∂u
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+ ∂v
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= 0, ð1Þ
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where velocity components in the directions of the x and y
are symbolized by u and v, respectively. σ is an electrical
conduction, cp is the specific heat of the constant pressure,
ϑ is the kinematic viscosity, BoðxÞ is the constant of the mag-
netic field BðxÞ, βT is the thermal expansion coefficient, βCis
concentration expansion coefficient, and ρ is the density of
the fluid. N is the microrotation, K1 is the vortex viscosity,
γ∗ represents the spin gradient viscosity, j is the ratio of
microinertia, α is thermal diffusion, and k thermal conduc-
tion of the fluid. m is the constant whose range is 0 ≤m ≤
1. Where at m = 0, there will be N = 0 that represents strong
concentration that show no rotation due to microelements
nearest to the solid surface, while m = 1/2 represents weaker
concentration. Furthermore, m = 1 shows turbulences in
flows of fluid (Ishak et al. [21]). Several researchers have
taken γ∗ = ðμ + ðK1/2ÞÞj = μð1 + ðK/2ÞÞj,where K1 = μK is
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Figure 2: The effects of the K and λ on skin friction ð f ′′ð0ÞÞ:
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the material parameter and = 2lve−x/l/Uw. T is the tempera-
ture of the boundary layer flowing fluid, Tw is the surface
temperature, T∞ is the ambient fluid temperature,C is the
nanoparticle volumetric fraction, qr is the radiative thermal
flux, and DB andDT are Brownian and thermophoresis diffu-
sions coefficients, respectively. The radiative heat flux qr is
written by

qr =
4σ∗

3k∗
∂T4

∂y
: ð6Þ

Here, k∗ is a mean absorptions coefficient and σ∗ is the
Stefan Boltzmann constant. At smaller difference in the tem-
perature of the flow, the T4 will be described as the function
of T . Using Taylor’s series to T∞ and by ignoring higher
terms due to smallest values, we have

T4 ≅ 4T3
∞ T − 3T4: ð7Þ

By using Equations (5) and (6) in Equation (3), we get

u ∂T
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+ v
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= α 1 + 4:Rd

3
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� �2
" #

:

ð8Þ

The considered boundary conditions of this problem are

v = vw xð Þ ; u = λuw xð Þ + A
du
dy

,

N = −m
∂u
∂y

,

T = Tw xð Þ = T∞ + T0 e
x/2l,

, C = Cw xð Þ = C∞ + C0e
x/2laty = 0,

u⟶ 0 ;N ⟶ 0 ; T ⟶ T∞ ; C⟶ C∞ as y⟶∞:

ð9Þ
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Magnetic field BðxÞ for exponential surface is written as

B = B0e
x/l: ð10Þ

Furthermore, the following exponential type of the sim-
ilarity transformation is applied to achieve the similarity
solutions:

ψ =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϑlUw

p
ex/2L f ηð Þ, ð11Þ
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2ϑL

r
ex/2L, ð15Þ

here, ψðx, yÞ is an stream function that in velocity form is

defined as u = ∂ψ/∂y and v = −∂ψ/∂x. Thus, we get

u =Uwe
x/L f ′ ηð Þ,

v = −

ffiffiffiffiffiffiffiffiffi
Uwϑ

2L

r
ex/2L f ηð Þ + ηf ′ ηð Þ

h i
:

ð16Þ

Whereas using Equation (15) in Equations (2) to (5), we
get following system of equations:

1 + Kð Þf ′′′ + f f ′′ − 2f ′2 + Kg′ − 2Mf ′ + 2λTθ + 2λCϕ = 0,
ð17Þ
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Boundary conditions take the form:

f 0ð Þ = S, f ′ 0ð Þ = λ + δf ′′ 0ð Þ, g 0ð Þ = −mf ′′ 0ð Þ, θ′ 0ð Þ = 1, ϕ 0ð Þ = 1,
ð21Þ

f ′ ηð Þ⟶ 0, g ηð Þ⟶ 0, θ ηð Þ⟶ 0, ϕ ηð Þ⟶ 0 as η⟶∞,
ð22Þ

here, prime represents derivative along the η, K = K1/μ is the
non-Newtonian parameter, Pr = ϑ/α is the Prandtl
number,Rd = 4σ∗T3

∞/kk∗ is the radiation parameter, Sc = ϑ
/DB is the Schmidt number, Nt = ðτwDTðTw − T∞ÞÞ/νT∞
is the thermophoresis parameter, Nb = ðτwDBðCw − C∞ÞÞ/ν
is the parameter of Brownian motion, λ is the shrinking/
stretching surface, here λ < 0 denotes shrinking case and λ
> 0 denotes stretching case and S > 0 denotes the suction
of mass by the surface due to porosity, and δ = A

ffiffiffiffiffiffiffiffiffiffiffi
Uw/ϑ

p
is

a velocity slip para-
meter. λT =Gr/Re2x = ðg∗βTðTw − T∞ÞÞ/ðuwÞ2 where λT is
ratio between buoyancy and inertia forces that is used as
the criterion to create dominant regions of the forced and
free convections. The λT = 1 stands for mixed (free and
forced) convection and λT =Gr/Re2x = ðg∗βTðTw − T∞ÞÞ/

ðuwÞ2 stands for mass convective parameters. The skin fric-
tion coefficient ðCf Þ, Nusselt number ðNuxÞ, and the Sher-
wood number ðShÞ are written as

Cf =
μ + Kð Þ ∂u/∂yð Þ + KN½ �y=0

ρu2w
,

Nux =
−x ∂T/∂yð Þy=0
Tw − T∞ð Þ ,

Sh =
−x ∂C/∂yð Þy=0
Cw − C∞ð Þ ,

ð23Þ

using Equation (15), we get
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2l
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r
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Sh Rexð Þ−1/2 = −∅′ 0ð Þ,

ð24Þ

where Rex = uwx/ϑ is the Reynolds number.
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3. Stability Analysis

To check the stability, there are taken unsteady case for
Equations (2)–(5) with addition of the new time dependent
variable τ as mentioned by Roşca and Pop [22].

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= ϑ + K1
ρ

� �
∂2u
∂y2
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ρ
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∂y

−
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To get the similarity equations, the similarity transfor-

mation (15) takes the form as follows:

ψ =
ffiffiffiffiffiffiffiffiffiffiffiffi
2ϑlUw

p
ex/2lf η, τð Þ ; N = Uwe3x/2l

ffiffiffiffiffiffiffi
Uw
2ϑl

r
g η, τð Þ, ð29Þ
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ex/2l, ð32Þ
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2l e
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Using Equation (33) in Equations (25)–(28), the follow-
ing is obtained:

1 + Kð Þ ∂
3 f

∂ η3
− 2 ∂f

∂η
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Figure 6: The effects of the M on velocity profiles ð f ′ðηÞÞ:
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1 + K
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∂2θ
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−
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The boundary conditions given in Equation (21) are
written as

f 0, τð Þ = S, ð38Þ

∂f 0, τð Þ
∂η

= λ + δ
∂2 f 0, τð Þ

∂η2
, ð39Þ

g 0, τð Þ = −m
∂2 f 0, τð Þ

∂η2
, ð40Þ

∂ θ 0, τð Þ
∂η

= 1,∅ 0, τð Þ = 1, ð41Þ

∂f η, τð Þ
∂η

⟶ 0, g η, τð Þ⟶ 0, θ η, τð Þ⟶ 0,∅ 0, τð Þ⟶ 0 as η⟶∞:

ð42Þ
For the stability of steady flow solutions f ðηÞ = f0ðηÞ, g

ðηÞ = g0ðηÞ, θðηÞ = θ0ðηÞ, and ∅ðηÞ =∅0ðηÞwhich placate
the problem given in Equations (17)–(21), we further define

f η, τð Þ − e−γτF η, τð Þ = f0 ηð Þ,
g η, τð Þ − e−γτG η, τð Þ = g0 ηð Þ,
θ η, τð Þ − e−γτH η, τð Þ = θ0 ηð Þ,
∅ η, τð Þ − e−γτS η, τð Þ =∅0 ηð Þ,

ð43Þ

where γ denotes unknown eigenvalues and Fðη, τÞ, Gðη
, τÞ, Hðη, τÞ, and Sðη, τÞ are smaller functions related to
the f0ðηÞ, g0ðηÞ, θ0ðηÞ, and∅0ðηÞ, respectively. By substitu-
tion of Equation (43) in Equations (34)–(42), we have
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Figure 7: The effects of the λT on the velocity profiles ð f ′ðηÞÞ:
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For to be achieved steady solution, there will be
taken τ = 0, so, we get

1 + Kð ÞF0′′′ + f0F0′′ + f 0′′F0 − 4f 0′F0′ + KG0′ −MF0′ + 2λTH0

+ 2λCS0 + γF0′ = 0,
ð45Þ

1 + K
2

� �
G0′′ + f0G0′ + F0g0′ − 3f 0′G0 − 3g0F0′ − 2KG0 − KF0′′ + γG0 = 0,

ð46Þ

1
Pr 1 + 4

3Rd

� �
H0′′ + f0H0′ + F0θ0′

+Nb∅0′H0′ +NbS0′θ0′ +Ntθ0′H0′ + γH0 = 0,
ð47Þ

S0′′ + Sc f0S0′ + F0∅0′
� �n o

+ Nt

Nb
H0′′ + γS0 = 0, ð48Þ

Boundary conditions are

F0 0ð Þ = 0 ; F0′ 0ð Þ = δF0′′ 0ð Þ ; F0′ ηð Þ⟶ 0 as η⟶∞, ð49Þ

G0 0ð Þ = −mF0′′ 0ð Þ ;G0 ηð Þ⟶ 0 as η⟶∞, ð50Þ

H0 0ð Þ = 0 ;H0 ηð Þ⟶ 0 as η⟶∞, ð51Þ

S0 0ð Þ = 0 ; S0 ηð Þ⟶ 0 as η⟶∞: ð52Þ

Solutions of the eigenvalue problem of Equations
(45)–(48) that satisfy Equations (49) are achieved by the
solver functions of bvp4c through MATLAB software. These
solutions provide a set of eigenvalues γ1 < γ2 < γ3. According
to Harris et al. [23], the required smallest eigenvalue can be
obtained by relaxing one of boundary condition to initial
condition. In this regard, in the present problem, we have
relaxed F0′ðηÞ⟶ 0 as η⟶∞ in the form of the F0′′ð0Þ
= 1. Where the smallest positive values of the γ1 demon-
strates initial deterioration of the disturbance, the solutions
concerned to the flow possessing smallest positive eigen-
values are considered physically feasible and stable. Con-
verse to it, the negative γ1 demonstrates initial growth of
the disorder; therefore, solutions of the fluid flow are consid-
ered not practically feasible and unstable.

S = 6, 7, 8

𝜆 = 3

𝜆C = 0.5

𝜆T = 1

Nt = 0.6
Nb = 0.4

𝛿 = 0.2

Pr = 1

m = 0.1
M = 0.1

Sc = 1

Rd = 0.7

K = 0.1

f
′(𝜂

)

𝜂

−6

−5

−4

−3

−2

−1

0

1

0 1 2 3 4

1st solution
2nd solution
3rd solution

Figure 8: The effects of the S on the velocity profiles ð f ′ðηÞÞ:
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4. Numerical Method

There are presented a short view of the shooting technique
(Meade et al. [24]) that is used in Equations (17)–(20) that

follow the boundary conditions given in Equation (21).
Actually, this method converts the BVPs into the IVPs. So,
we have

f ′ = FP , f ′′ = FPP, 1 + Kð ÞFPP′ + FFPP − 2 FPð Þ2 + KGP − 2Mf ′ + 2λTθ + 2λCϕ = 0,

g′ =GP, 1 + K
2

� �
GP′ + FGP − 3GFP − 2KG − KFPP = 0,

θ′ = θP, ϕ′ = ϕP,
1
Pr 1 + 4

3 Rd

� �
θP′ + FθP + NbϕPθP + Nt θPð Þ2 = 0

ϕ′ = ϕP, ϕP′ + ScFϕP +
Nt

Nb
θP′ = 0:

ð53Þ

𝛿 = 0.1, 0.2, 0.3

S = 6
𝜆 = 3

𝜆C = 0.5

𝜆T = 1

Nt = 0.6
Nb = 0.4

Pr = 1

m = 0.1
M = 0.1

Sc = 1

Rd = 0.7

K = 0.1

f
′(𝜂

)

𝜂
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Figure 9: The effects of the δ on the velocity profiles ð f ′ðηÞÞ:
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The boundary conditions are

F 0ð Þ = S ; FP 0ð Þ = λ + δh1, FPP 0ð Þ = h1,
G 0ð Þ = −mh1,GP 0ð Þ = h2,
θP = 1, θP 0ð Þ = h3,
ϕ 0ð Þ = 1 ; ϕP 0ð Þ = h4,

ð54Þ

where h1, h2, h3, and h4 are the unknown applied initial con-
ditions. Therefore, shooting values of h1, h2, h3, and h4 are
carefully taken which satisfy the specified boundary condi-
tions of the problem properly. Furthermore, it is noticed that
computations of this problem are done by the help of Maple
software where shootlib function is added.

5. Result and Discussion

Equations (17)–(20) that subject to the boundary conditions
given in Equations (21) are solved numerically by a shooting
method in Maple software for the distinct values of used
physical parameters. Triple solutions are obtained for differ-
ent initial guesses at various ranges of specified parameters.
Furthermore, for authentication of results, our obtained

results have been compared with previously obtained results
by the Bidin and Nazar [20], where the comparison indicates
a good agreement with our obtained results which are shown
in Table 1.

The numerical computations demonstrate the effects of
different used physical parameters on skin friction
coefficient ð f ′′ð0ÞÞ,couple stress coefficient ðg′ð0ÞÞ, local
Nusselt number ð−θ′ð0ÞÞ, and Sherwood number ð−ϕ′ð0ÞÞ
as well as on the velocity, microrotation, temperature, and
concentration profiles of the micropolar nanofluid which
are graphically presented in Figures 2–22. Stability analysis
is performed due to occurrence of triple solutions. There-
fore, stability analysis is performed by bvp4c in MATLAB
programming. The achieved eigenvalues are presented in
Table 2, while result of the stability shows that the first solu-
tion is the stable and the physically feasible which possesses
smallest positive eigenvalues, while negative eigenvalues are
found for two other solutions which are declared as unstable
and not physically feasible. Therefore, in this article, the
result of only first solutions which is physically feasible solu-
tions are presented.

The influence of the material parameter ðKÞ on the skin
friction coefficient, couple stress coefficient, Nusselt number,
and Sherwood number with variation of stretching/

𝜆 = 1, 2, 3

S = 6

𝛿 = 0.2
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Figure 10: The effects of the λ on the velocity profiles ð f ′ðηÞÞ:
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Figure 11: The effects of the λ on the microrotation profiles ðgðηÞÞ:
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Figure 12: The effects of the S on the microrotation profilesðgðηÞÞ:
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Figure 13: The effects of the δ on the microrotation profilesðgðηÞÞ:
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Figure 14: The effects of the M on the temperature profiles ðθðηÞÞ:
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Figure 15: The effects of the S on the temperature profiles ð θðηÞÞ:
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Figure 16: The effects of the Pr on the temperature profilesðθðηÞÞ:
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Figure 17: The effects of the Rd on the temperature profilesðθðηÞÞ:
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Figure 18: The effects of the Nb on the temperature profilesðθðηÞÞ:
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Figure 19: The effects of the Nt on the temperature profilesðθðηÞÞ:
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Figure 20: The effects of the S on the concentration profilesðϕðηÞÞ:
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Figure 21: The effects of the Nb on the concentration profilesðϕðηÞÞ:
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shrinking parameter ðλÞ are shown in Figures 2–5, where
triple solutions are found for λ > λc and unique solution
for <λc, while second and third solutions are merged into
one another at the point λc and only one (first) solution
remained continuous for variation of the λ. Furthermore,
Figure 2 and Table 3 show that an increase in K with varia-
tion in λ increase the skin friction coefficient for the λ > 0
and decrease for λ < 0 in the first (stable) solution. Table 3

and Figure 3 indicate that an increase in K along the varia-
tion in λ, the couple stress rises for the λ > 0 and reduces
for the λ < 0. Furthermore, Table 3 defines the numerical
results related to the Figures 2 and 3.

Figures 4 and 5 along Table 4 indicate that an increment
in the values of K with variation of λ, the Nusselt number,
and the Sherwood number increase for λ > 0 and reduce
for λ < 0 in the first solution throughout the flow of the
micropolar nanofluid.

While the effect of magnetic parameter ðMÞ on velocity
profile ð f ′ðηÞÞ is shown in Figure 6, it can be seen that veloc-
ity decreases with increase in the parameterM. That occurs
due to rising Lorentz forces transverse magnetic field that
becomes a reason to decelerate the velocity of the fluid.
Figure 7 indicates the influence of thermal convective
parameter ðλTÞ on velocity profile ð f ′ðηÞÞ . It is seen that
the velocity of micropolar nanofluid declines as λT is
increased. Figure 8 shows the influence of the suction
parameter ðSÞ on velocity profile ð f ′ðηÞÞ. It is examined that
the increasing rate of the suction decreases the velocity and
momentum boundary layer thickness in flow of the micro-
polar nanofluid. It is because of the flow approaches nearer

Table 2: The smallest obtained eigenvalues ðγ1Þ at several values of
theM and K , where the values of other parameters are fixed as S = 6
, Pr = Sc = λT = λ = 1, λC = 0:5, Nb = 0:4, Nt = 0:6, Rd = 0:7, m = 0:1
, and δ = 0:2.

M K
γ1

First solution Second solution Third solution

0.1 0.1 1.54340 -1.98503 -2.7911

0.2 0.1 0.09248 -0.43835 -0.96750

0.3 0.1 2.10262 -0.71688 -1.59809

0.1 0.1 0.05824 -0.40107 -2.10521

0.1 0.15 0.63291 -0.20561 -1.90368

0.1 0.2 0.80136 -0.57696 -0.93832
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Figure 22: The effects of theNt on the concentration profilesðϕðηÞÞ:
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to solid surface, so the suction takes place due to porosity of
the medium which becomes a reason to decrease the velocity
and its boundary layer thickness. Figure 9 illustrates the
influence of the velocity slip parameter ðδÞ on the velocity
profile ð f ′ðηÞÞ. It is observed that by rising value of the
parameter δ, the velocity profile along the velocity boundary
thickness decrease throughout the flow. Actually, the
increasing value of δ develops a resistance forces at the sur-
face that becomes the reason to decline the velocity profile,
while the effect of parameter λ is found opposite to the influ-
ence of the parameter δ on velocity profile of micropolar
nanofluid that is shown in Figure 10. Likewise, influence of
parameter λ on angular velocity profile ðgðηÞÞ is shown in
Figure 11. The figure shows that any increment in λ rises
the velocity of the bulk particles that possesses microrota-
tions during the flow. Figure 12 indicates the impact of the
parameter S on angular velocity profile ðgðηÞÞ. It is seen that
an increment in S decelerate the angular velocity related to
bulk particles. Figure 13 specifies the effect of the parameter
δ on the angular velocity profile ðgðηÞÞ. The result of this fig-
ure shows that the angular velocity of bulk particles reduces
during the flow. The influence of various physical parame-
ters on temperature profiles ðθðηÞÞ of micropolar nanofluid
are shown by Figures 14–19. Figure 14 indicates that any
increment in the parameter M rises the temperature of the

micropolar nanofluid during flow. Against it, Figure 15
shows that the increasing rate of suction decreasing the ther-
mal boundary thickness along the temperature profile ðθðηÞÞ
of the micropolar nanofluid. Actually, this occurs due to rise
in suction rate which raises the resistance force between the
fluid layers and solid surface. Such sorts of results are
observed in Figure 16, when the value of the Prandtl number
(Pr) is increased. Actually, higher values of the Prandtl num-
ber decreases thermal diffusion of fluid particles which result
in the decrease temperature of the fluid. Therefore, increas-
ing the value of the Pr decreases the temperature of the all
types of the fluids during the flow. An increase in thermal
radiative parameter ðRdÞ raises temperature and boundary
layer thickness during the flow of the micropolar nanofluid
that is shown in Figure 17. Actually, the existence of the
thermal radiation leads to enhancing the thermal boundary
layer thicknesses. Practically, enlarging radiations yields a
major enhancement in temperature of fluid. Figures 18 and
19 show the influence of rising the Brownian motion param-
eter ðNbÞ and thermophoresis parameter ðNtÞ on the tem-
perature profiles ðθðηÞÞ,respectively. The results show that
any increment in the mentioned parameters increases the
temperature of the particular nanofluid and its boundary
layer thicknesses. This takes place because of Nb and Nt
increases the temperature gradient at the solid adjacent
surface.

Figures 20–22 show the influence of the Brownian
motion parameter ðNbÞ, Schmitt number, and thermophor-
esis parameter ðNtÞ on nanoparticle concentration profiles
ðϕðηÞÞ. Figure 20 shows that an increase in Nb deceases
the concentration of the nanoparticles in the micropolar
nanofluid throughout the flow. Figure 21 shows the influ-
ence of the Schmitt number (Sc) on the concentration profile
ðϕðηÞÞ. This figure shows that the concentration of the nano-
particles decreases with increase in the Sc. It is due to
increasing the value of Sc which decreases the mass diffu-
sion; the larger diffusion becomes a reason to decrease in
the concentration field. Moreover, it also decreases the thick-
ness of the concentration boundary layers, while influence of
the Nt looks opposite to the influence of Sc on the concen-
tration profile, where increasing rate of the Nt raises concen-
tration of nanoparticles throughout the flow of micropolar
nanofluid.

Table 4: Computation of local Nusselt number and the Sherwood
number for several values of λ and K .

−θ′ 0ð Þ −ϕ′ 0ð Þ
K λ

1st

solution
2nd

solution
3rd

solution
1st

solution
2nd

solution
3rd

solution

0.1

-2 2.40089 1.95999 1.77551 2.2951 1.53985 1.30019

0 2.44603 2.03153 1.81838 2.35043 1.61516 1.31665

2 2.4868 2.09011 1.86953 2.40012 1.67863 1.35093

0.2

-2 2.39719 1.95267 1.82215 2.28999 1.52279 1.34751

0 2.44599 2.03695 1.86928 2.35043 1.6152 1.37067

2 2.48968 2.10295 1.92575 2.4042 1.6897 1.41474

0.3

-2 2.39351 2.28482

0 2.44593 2.03121 1.92588 2.35042 1.5986 1.43926

2 2.51407 2.10777 1.98366 2.43491 1.68881 1.48869

Table 3: Computation of skin friction and couple stress coefficient for several values of λ and K .

f ′′ 0ð Þ g′ 0ð Þ
K λ 1st solution 2nd solution 3rd solution 1st solution 2nd solution 3rd solution

0.1

-2 5.463761 -3.74033 -8.4974 8.856247 172.091 -15.615

0 0.247399 -8.04981 -13.135 0.433814 197.318 -20.9

2 -5.1687 -12.8786 -17.877 -9.33088 211.336 -26.979

0.2

-2 5.2882 -3.85674 -7.038 8.100267 56.6338 -8.4566

0 0.239959 -7.82914 -11.616 0.408043 69.3817 -14.791

2 -5.02881 -12.4521 -16.276 -8.66079 73.5664 -21.041

0.3

-2 5.12193 7.421568

0 0.232959 -7.85944 -10.129 0.384772 26.4923 -8.2297

2 -4.89749 -12.2182 -14.789 -8.05949 28.5981 -15.258
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6. Conclusions

The effects of the various types of physical flow parameters
on MHD mixed convection boundary layer flow, heat, and
mass transfer of the micropolar nanofluid on exponentially
vertical stretching/shrinking surface are studied here. The
similarity solutions are achieved by applying similarity
transformation from partial differential equations into the
ordinary differential equation. The shooting method is
implemented to obtain the numerical solution of the equa-
tions with variation of the used physical parameters. At var-
ious ranges of used parameters, triple solutions are obtained,
so the stability is performed by help of the MATLAB
through bvp4c. Effects of various used physical parameters
such as the magnetic parameter, thermophoresis parameter,
microrotation parameter, suction parameter, radiation
parameter, Prandtl number, Brownian motion parameter,
thermal slip parameter, and Schmidt number are examined,
discussed, and also presented graphically. The main results
of this study are described below:

(1) Skin friction coefficient, couple stress, Nusselt, and
Sherwood numbers are increasing for λ > 0 and
decreasing for λ < 0 with increase in material para-
meter ðKÞ

(2) Triple solutions are found at the different ranges of
the flow parameters, and from stability analysis, it
is found that only first solution is stable as well as
physically feasible

(3) The buoyancy parameter and high suction are the
leading causes for existence of triple solutions in this
problem

(4) The velocity field of the micropolar nanofluid decel-
erates with increase in the suction parameter ðSÞ,
magnetic parameter ðMÞ, and velocity slip para-
meter ðδÞ, while increases for increase in thermal
convection parameter ðλTÞ and stretching parameter
ðλÞ

(5) An increase in parametersM, Rd , Nt , and Nb raises
the temperature profiles of the micropolar nanofluid,
while it decrease with increase in Pr and S

(6) Any increment in Nt rises the concentration bound-
ary layer thickness and its profile, while an increase
in Sc and Nb decreases the concentration boundary
layer thickness and its profiles

Nomenclature

x, y: Cartesian coordinates (m)
u, v: Velocity components (m·s-1)
Uw: Shrinking and stretching velocity
K : Material parameter
N : Microrotation
g∗: Gravitational force
T : Temperature (K)
T∞: Ambient temperature

Tw: Variable temperature at sheet (K)
θ: Dimensionless temperature (K)
C: Concentration (kg·m-3)
C∞: Ambient concentration (kg·m-3)
Cw: Variable concentration at sheet
βT : Thermal expansion coefficients
βC : Concentration expansion coefficients
ϑ: Kinematic viscosity (m2·s-1)
K1: Vortex viscosity (m2·s-1)
γ∗: Spin gradient viscosity (m2·s-1)
j: Microinertia per unit mass (kg·m-3)
σ∗: Stefan-Boltzmann constant
α: Thermal diffusivity (m2/s)
ψ: Stream function
η: Transformed variable
qr : Radiative heat flux (w/m2)
BðxÞ: Magnetic field (kg s-2A-1)
Rd : Thermal radiation
M: Magnetic parameter
Pr: Prandtl number
DB: Brownian diffusion (kg·m-1·s-1)
DT : Thermophoretic diffusion (kg·m-1·s-1·K-1)
vw: Suction/injection velocity (m·s-1)
σ: Electrical conductivity
Nt : Thermophoresis parameter
Nb: Brownian motion parameter
S: Suction/injection parameter
λ: Shrinking/stretching parameter
Sc: Schmidt number
k: Thermal conductivity
m: Constant
Cf : Skin friction coefficient
Nux: Local Nusselt number
k∗: Mean absorption coefficient
Sh: Local Sherwood number
Rex : Local Reynolds number
γ: Unknown eigenvalue
γ1: Smallest eigenvalue
μ: Dynamic viscosity
τ: Stability transformed variable.
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