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The elimination of Reactive Red 120 (RR120) from synthetic solution using biochar generated from Ulva prolifera was
investigated. The process parameters sorbent dose (A), pH (B), initial dye concentration (C), and temperatures (D) were
optimized using response surface methodology (RSM). To estimate the removal effectiveness of dye with the best 27 trails, the
Box-Behnken method (blocked) was utilised. Analysis of variance (ANOVA), main effect plot, interaction plot, and surface
plot were used to establish the significance of the model, and the confidence level of the model was set at 95%. To maximise
the objective, the RSM optimizer was utilised with a desirability of 1. Furthermore, the batch investigation was supplemented
by isotherm models, kinetic models, and thermodynamic analyses to understand the adsorption mechanism.

1. Introduction

Water is the primary source of survival for humans and
aquatic life, and it has recently become a big concern. Many
chemicals are introduced into water bodies as a result of
home and industrial activities, resulting in water pollution
[1]. Dyes cause significant water contamination. There are
currently about 10,000 different types of dyes available in
the industry [2]. Over the last three decades, the use of dyes
in the textile, paint, paper and pulp, and leather sectors has
steadily increased. Dyes are classified into two types: natural
dyes and synthetic dyes. Natural dyes have various draw-
backs, including limited availability, dyeing processing time,
and expense. Synthetic dyes are created by colouring natu-
rally occurring dyes. Dyes are further subdivided into reac-
tive dyes, acid dyes, and cationic dyes [3]. Reactive dyes
have various distinct properties. Reactive dyes will strongly
bond to the cloth through the production of covalent bonds,
resulting in good colouring over the fabric.

Ion exchange, membrane filtration, sedimentation, elec-
trocoagulation, and chemical precipitation are some of the
various treatment methods for separating contaminants
from the effluent [4]. These traditional processes are time-
consuming, and the colour treatment costs a lot of money.
The adsorption technique is used to eliminate several haz-
ardous contaminants. The key advantage of the adsorption
method is that it takes less time and has a lower treatment
cost, and regeneration of the sorbent will result in a lower
overall treatment cost [5]. Activated carbon is one of the
most common sorbents used in industry. Because of the het-
erogeneous nature of the activated carbon, a wide range of
contaminants was absorbed [6]. Many researchers advocated
the biosorption approach to solve the shortcomings of acti-
vated carbon. Biosorption is a method that uses either live
or dead biomass to remove contaminants [7]. Many sorbents
derived from waste leaf compost, neem seeds, tamarind
seeds, industrial sludge, date seeds, orange peels, powdered
nut shell, and rice husk have proven to be effective.
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Biochar is a new sorbent created through the pyroly-
sis process in an oxygen-limited environment [8]. Because
of its improved properties, biochar has a high potential
for harmful pollutant sorption. Because of the pyrolysis
process, biochar is rich in carbon and has improved
functional groups. Heavy metals and colour molecules
are removed from effluents using biochar [9]. The spent
biochar is then utilised to enhance the soil. In recent
years, biochar has been seen as an environmental man-
agement tool capable of mitigating environmental con-
cerns [10]. There are numerous approaches for

improving the properties of biochar. Heat treatment, acid
treatment, alkaline treatment, and the addition of foreign
material to biochar result in the creation of a new unique
biomaterial [11, 12].

RSM is a statistical tool for optimizing process condi-
tions [13]. To obtain a single output-dependent variable,
several input parameters are examined at various levels
(response). The Box-Behnken approach is used to develop
the design of tests, and it has intervals between -1 and +1,
with the design predicting in-between values. RSM will
reduce the number of trials required to obtain the output

Table 1: Design of experiment input factors with different levels.

Levels
Variables Code

1 0 -1

1 2 3 Biochar dose (g/L) A

2 3 4 pH B

250 500 750 Initial dye concentration (mg/L) C

30 35 40 Temperature (°C) D

Table 2: Comparison of RSM and experimental removal efficiency with residual errors.

Run order A B C D
Efficiency (%)

Residual error
Experimental RSM predicted

1 3 3 500 30 77.65 77.68 0.03

2 3 4 500 35 72.85 72.30 -0.55

3 2 3 500 35 77.10 76.06 -1.04

4 2 4 750 35 68.50 68.25 -0.25

5 2 3 750 30 73.30 73.72 0.42

6 1 3 500 30 67.15 66.96 -0.19

7 2 4 250 35 73.53 73.36 -0.16

8 1 2 500 35 71.23 71.99 0.76

9 2 3 750 40 73.75 74.05 0.30

10 2 3 250 30 78.33 78.23 -0.09

11 2 2 500 30 78.70 78.56 -0.14

12 2 2 750 35 75.40 75.29 -0.11

13 2 3 500 35 78.12 78.10 -0.02

14 3 2 500 35 79.75 79.16 -0.59

15 2 2 250 35 81.62 81.60 -0.02

16 1 3 750 35 63.85 63.10 -0.75

17 3 3 750 35 74.35 74.74 0.39

18 1 4 500 35 63.50 64.30 0.80

19 1 3 250 35 68.88 68.55 -0.33

20 2 4 500 40 72.25 72.45 0.20

21 2 3 500 35 79.20 80.26 1.06

22 1 3 500 40 67.60 67.30 -0.30

23 2 2 500 40 79.85 79.95 0.10

24 2 4 500 30 71.80 71.77 -0.03

25 3 3 250 35 81.23 82.04 0.81

26 3 3 500 40 78.10 78.01 -0.09

27 2 3 250 40 78.78 78.57 -0.21
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Table 3: ANOVA for the developed model.

Source DF Adj SS Adj MS F value p value Remarks

Model 14 693.639 49.546 96.16 <0.001 Significant

Linear 4 572.566 143.141 277.80 <0.001 Significant

A 1 317.498 317.498 616.19 <0.001 Significant

B 1 162.251 162.251 314.89 <0.001 Significant

C 1 91.853 91.853 178.27 <0.001 Significant

D 1 0.963 0.963 1.87 0.197 —

Square 4 119.561 29.890 58.01 <0.001 Significant

A ∗A 1 114.505 114.505 222.23 <0.001 Significant

B ∗ B 1 16.870 16.870 32.74 <0.001 Significant

C ∗ C 1 11.414 11.414 22.15 <0.001 Significant

D ∗D 1 2.954 2.954 5.73 0.034 —

2-way interaction 6 1.512 0.252 0.49 0.805 —

A ∗ B 1 0.172 0.172 0.33 0.574 —

A ∗ C 1 0.860 0.860 1.67 0.221 —

A ∗D 1 0.000 0.000 0.00 1.000 —

B ∗ C 1 0.357 0.357 0.69 0.421 —

B ∗D 1 0.123 0.123 0.24 0.635 —

C ∗D 1 0.000 0.000 0.00 1.000 —

Error 12 6.183 0.515 — — —

Lack-of-fit 10 3.978 0.398 0.36 0.890 —

Pure error 2 2.206 1.103 — — —

Total 26 699.822 — — — —
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Figure 1: Probability plot for the observation of different trails.
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[14, 15]. The current work employed 27 experimental trails
based on four input variables to predict one output variable
(biochar removal efficiency) for dye molecules. Ulva prolif-
era is widely available throughout the world’s coastal
regions. Because these marine seaweeds are naturally occur-
ring, they can be obtained at a very low or no cost. The use
of overgrown biomass as an environmental mitigation
method for eutrophication in water bodies will be beneficial
to the environment. Many experts believe Ulva prolifera bio-
char can be beneficial in the sorption of heavy metals, anti-

biotics, and other harmful substances [16]. The current
work investigated the RR120 adsorption mechanism in a
single solute system using various influencing parameters.

2. Materials and Methods

2.1. Biochar Preparation and Batch Adsorption Studies. The
biochar was created using the biomass of Ulva prolifera.
A preliminary treatment of the biomass was performed
prior to the synthesis of biochar. Deionized water was
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used to eliminate dust particles and other contaminants
(three times). To achieve a uniform size, the washed bio-
mass was naturally dried and shredded into 7.5mm
pieces. To ensure the absence of moisture content, the
shredded biomass was heated to 103°C. Finally, the dried

biomass was placed in a muffle furnace to produce bio-
char. To begin, the muffle furnace was cleaned using
nitrogen gas to verify that there was no oxygen present.
The necessary amount of dried biomass was preserved
in the crucible, which was then covered with aluminium
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foil and pierced with two small holes. The pyrolysis tem-
perature was held at 300°C for three hours, and the bio-
char was retained in the furnace until it reached room
temperature. The batch adsorption study was carried out
in the same manner as described in our prior
research [17].

2.2. Response Surface Methodology. RSM used Minitab to
create a Box-Behnken study design. The batch technique
takes into account the biochar dosage (A), pH (B), initial
RR120 concentration (C), and temperature (D) as input
parameters. Table 1 summarises the variable’s various levels.

3. Result and Discussion

3.1. Batch Adsorption Studies. The biochar dose (1 to 10 g/
L), pH (1.75 to 5), initial dye concentration (100 to
1000 g/L), and temperature (20 to 45°C) were all varied
in real-time batch tests. At ideal conditions, the batch
adsorption results showed that 79.8 percent of the colour
was removed [17]. The batch results came to the follow-
ing conclusions. The removal effectiveness increased with
an increase in biochar dose, initial dye concentration, and

temperature but decreased with an increase in pH. The
isotherm model determined that the Langmuir model best
fit the experimental data with the highest correlation
coefficient. The Langmuir isotherm indicates that the
sorption was caused via chemisorption. Because of the
accessibility of uniform binding sites, the results deter-
mined that the sorption of the dye molecules over the
surface of the sorbent was even with single layers (mono-
layer adsorption). Between the adsorbate and the adsor-
bent, a strong equilibrium condition was achieved. The
kinetic study is carried out to assess the sorption process
at different time intervals with a constant initial dye con-
centration. The kinetic investigation indicated that the
results predicted by the pseudo-second-order kinetic
model are superior to the results predicted by the
pseudo-first-order kinetic model, and the correlation coef-
ficient for the PSO model was also good. PSO models fit
only when the sorption was caused by a chemisorption
mechanism. The thermodynamic analysis determined that
the reactions are spontaneous and endothermic. The free
energy value grew as the temperature rose. The negative
Gibbs free energy and positive enthalpy values found that
at high temperatures, reactions are spontaneous The
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adsorbate and adsorbent’s randomness is represented by
the positive entropy value. Furthermore, the desorption
studies validated the biochar’s ability to sequentially
adsorb and desorb for three cycles [17].

3.2. RSM-Design of Experiments. Equation (1) shows the
model equation produced by the Box-Behnken approach
for determining removal efficiency. The model was built
using the linear, two-way interaction, and quadratic form
of the various components. Table 2 shows the anticipated
and experimental elimination efficiency of the 27 trails.
The correlation value (R2) was found to be 0.9912, indicating
an excellent match for the model [18]. The adjusted correla-
tion coefficient (adj R2) was calculated to be 0.9902, with just
a 0.01 difference between R2 and adj R2 [19]. The adj R2 is
used to determine the variance of the mean created by the
model, and a small difference indicates that the model is sig-
nificant.

Removal Efficiency = 3:1 + 23:98A + 7:21 B + 0:0125 C
+ 2:245D − 4:634A ∗A – 1:779 B ∗ B
− 0:000023 C ∗ C − 0:0298D ∗D
+ 0:208A ∗ B – 0:00185A ∗ C
+ 0:0000A ∗D + 0:00119 B ∗ C
− 0:0350 B ∗D:

ð1Þ

The results of the analysis of variance are reported in
Table 3. The p and F values were used to determine the
model significance for linear, quadratic, and two-way
interactions of distinct components. The model assumes
a 95 percent confidence level, and a p value of less than
0.05 indicates that the model is significant [20]. The p
values of numerous components in Table 3 were less than
0.001, indicating that the model was significant. Tempera-
ture has a p value of 0.197, which is not statistically signif-
icant. The nonsignificance was due to the interaction of
other factors with temperature and the quadratic shape
of temperature. The higher the F value, the better the
model. The relevance of a model is shown by a F value
of 96.17 [21].

Figure 1 shows a normal probability map that can be
used to determine if the distribution of expected values
is normal or not. If the developed model is a good fit,
the normalcy probability plot should stay close to a
straight line. Many points are close to the expected normal
probability plot, while those points away from the refer-
ence line are termed outliers, as seen in Figure 1. Fitted
vs. residual values are compared, with fitted values on
the x-axis and residual values on the y. The results show
that the fits are unevenly spread out with fanning, imply-
ing that the variables are not constant. The order vs. resid-
ual method was used to determine if the data obtained
had any residual. The results are inconsistent and unre-
lated to one another, and there is no clear justification
for the residuals for each element. The amount of orders
categorised concerning the error was often analysed using

a histogram. According to the results, eight observations
have an error between 0.1 and -0.1, and this histogram
shows that approximately one-third of the data have insig-
nificant errors, indicating the model’s quality.

Figure 2 shows the Pareto chart for several factors. The
Pareto chart creates a standard line to identify the vari-
ables that have a substantial impact on the answer. From
the largest to the smallest effect, a Pareto chart is used
to determine the standardised effect of all variables. The
statistically significant level is indicated by the reference
line, which is based on the significant level. The signifi-
cance threshold is usually kept at 95 percent, or 0.05,
which means the results are 95 percent correct. The
importance is indicated by the individual and interaction
factors crossing the reference line at 2.18. Factors and
interactions that do not pass the 2.18 reference line are
not significant. With the created models, the factors rep-
resenting the bars at A, B, C, AA, BB, and CC suggest
that these factors are important with a 95 percent accu-
racy. Temperature was not a statistically significant factor.
For D and DD, the coded coefficient of the p value was
0.197 and 0.34, respectively. To be considered significant,
the p value must be less than 0.05. The p value for all
remaining temperature interactions was more than 0.05
and not significant. Temperature and the interaction of
other parameters with temperature are not significant
for the created model, according to the Pareto chart.

3.3. Main Effect and Interaction Plot of Variables. The major
effect plot of all factors was depicted in Figure 3. The
results showed that removal efficiency improved with

60

65

70

75

80

85

3.0

2.5

2.0

1.5
1.0

30

32

34
36

38
40

Re
m

ov
al

_e
ffi

ci
en

cy

Biochar dose Tem
pera

ture

Removal_efficiency
77-78
76-77
74-76
73-74
72-73

71-72
69-71
68-69
67-68

Figure 7: Surface plot: biochar (a) vs. temperature (d).

7Journal of Nanomaterials



increasing biochar dose, decreased with increasing pH,
and decreased with increasing dye concentration. The
temperature dropped at first, but a subsequent rise in
temperature increased the removal efficiency. Biochar
with a larger dosage may have more binding sites for
the colour molecules available. The pH determines the
effectiveness of elimination. The biochar’s point of zero
charges was found to be 6.72. At a pH of 6.72, the avail-
able positive and negative charges on the surface are
neutral. Positive charges develop more quickly in pH
changes less than a point of zero change, while negative
charges develop more quickly in pH changes higher than
a point of zero change [22]. Because reactive dyes are
negatively charged ions, sorption will increase when pH
is reduced. This could lead to superior elimination effi-
ciency at pH2 rather than pH4. The initial dye concen-
tration indicates how many dye molecules are accessible
to bind to available binding sites. A higher dosage may
have resulted in more dye molecules being deposited at
the binding sites [23]. Temperature is thought to be a
significant influencing factor in the sorption process. Ini-
tially, increasing the temperature from 30 to 35°C
reduced the removal efficiency, but increasing the tem-
perature from 35 to 40°C improved the efficiency. It
implies that sorption can take place as a result of phys-
ical or chemical adsorption.

The interaction pot for many variables is depicted in
Figure 4. The continuous response (removal efficiency) to
the first- and second-category components is determined
using an interaction plot. The outcomes of interaction plots
can be parallel or nonparallel lines. There was no interaction
between the variables, as indicated by the parallel line. The
nonparallel line implies that there is a lot of interaction
between the variables. Figure 4 depicts the nonparallel lines,
which proved that the variables had a substantial interaction.
The following conclusions can be drawn from the graph, for
example. When biochar is the first factor, a dose of 3 g/L of
biochar produced the best results with all other interacting
variables. At 2, 250mg/L, and 40°C, the secondary parame-
ters pH (B), initial dye concentration (C), and temperature
(D) showed the best responses. When pH was taken into
account as the initial consideration, a pH of 2 produced
the best results. At 3, 250mg/L, and 40°C, the secondary var-
iables of biochar, initial dye concentration, and temperature
showed maximal responses. So, based on the interaction
plot, A = 3 g/L, B = 2, C = 250mg/L, and D = 40°C were
determined to be the best conditions for maximal response
yield.

3.4. Surface Plot of Different Variables. The surface plot is
used to visualise the relationship between two independent
variables and the desired result. Surface plots usually
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include three axes: X, Y , and Z. The X- and Z-axes are
used to input independent variables, while the Y-axis is
used to display desired replies. Figures 5–10 show how dif-
ferent variables interact to get a desired response (removal
efficiency). Figure 5 shows the X- and Z-axes as the bio-
char dose and pH, respectively. The removal efficiency is
allocated to the Y-axis. The surface plot of these two
parameters revealed that a pH of 2 to 2.5 and a biochar
dose of 1.5 to 3 g/L resulted in the highest removal effec-
tiveness of 78-80 percent. It was also determined that an
increase in pH and a decrease in biochar dose both
reduced efficiency. From the surface plot, it can be
deduced that a lower pH and a higher biochar dose are
required for maximum removal effectiveness. The surface
contact between biochar dosage and initial dye concentra-
tion was depicted in Figure 6. With a biochar dose of 2.5
to 3 g/L and an initial dye concentration of 200 to 300mg/
L, a removal efficiency of 79 to 81 percent was achieved.
The surface plot of temperature vs. biochar dose is shown
in Figure 7. Between a biochar dose of 2.5 to 3 and a tem-
perature of 35 to 40°C, a maximum removal effectiveness
of 78 to 79 percent was achieved. The surface plot between
pH and initial dye concentration is shown in Figure 8.

When the pH was kept between 2 and 2.5 and the initial
dye concentration was 200 to 300mg/L, the removal effi-
ciency was 80 to 82 percent. At a pH of 2 and a temper-
ature of 40°C, Figure 9 depicts the surface interaction
between pH and temperature, with an efficiency of 79 to
80 percent. The surface interactions of initial dye concen-
tration and temperature are depicted in Figure 10. With a
dye concentration of 200 to 300mg/L and a temperature
of 35 to 40°C, a removal efficiency of 78 to 79 percent
was achieved.

3.5. RSM Optimizer. The optimization plot is used to
increase the range of selected elements with a high attrac-
tiveness level or to maximise the response. The goal of this
study was to boost responsiveness by taking into account
all aspects at a desired level of 1. Setting the goal to maximise
the reaction enhanced the response. The actual lower and
higher responses were 63.5 and 81.62 percent, respectively.
At process circumstances of A of 2.5 g/L, B of 2, C of
250mg/L, and D of 36.5°C, the composite desirability of 1
was attained, with a response of 83.28 percent. Using the
RSM optimization plot, a progressive increase of 1.66 per-
cent was obtained. A boundary layer was created by varying
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the prediction interval (PI) between 81.16 and 85.40. To
have a significant model, the RSM optimal predictor must
fall inside this range. An optimization graphic was used to
establish the process conditions for a batch experiment.

Three sets of trials were carried out, resulting in an average
removal efficiency of 82.90 percent. The RSM optimization
plot for the reactive red 120 elimination is shown in
Figure 11.
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4. Conclusion

The following conclusions were reached as a result of the
current inquiry.

(i) The chemisorption method was responsible for the
sorption of reactive red 120 employing Ulva prolifera

(ii) Thermodynamic tests demonstrated that the reac-
tions are endothermic and spontaneous

(iii) Using the response surface approach, the maximum
removal efficiency was determined to be 81.62
percent

(iv) The major effect plot revealed that as pH and initial
dye concentration increased, removal efficiency
declined, whereas it increased as biochar dose and
temperature increased

(v) RSM’s optimization plot revealed that by adjusting
the parameters, a removal effectiveness of 83.28 per-
cent may be achieved
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