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Decreasing the effectiveness of existing antimicrobial agents and increasing antimicrobial resistance to them is one of the major
challenges of the healthcare system. This study was aimed at determining the optimal conditions for synthesizing novel
alginate/kaolin/Ag nanocomposite with the highest antimicrobial activity against Streptococcus mutans (S. mutans) biofilm. For
this purpose, silver nanoparticles and alginate biopolymer were synthesized by the coprecipitation and biological methods,
respectively. In situ method was used to synthesize nanocomposites. The antibacterial activity of nanocomposites against S.
mutans biofilm was measured in 9 experiments designed by the Taguchi method to determine the highest level of antibacterial
performance. Nanocomposites synthesized in experiment 3 (60mg/ml alginate, 0.9mg/ml kaolin, and 4mg/ml Ag) and
experiment 5 (70mg/ml alginate, 0.6mg/ml kaolin, and 4mg/ml Ag) had the strongest antibacterial activity against the S.
mutans biofilm, which completely stopped the growth of the bacterium. Various characterization tests were used to identify
nanocomposite components materials that confirmed the formation of nanocomposite with desirable properties. Thermal
analysis showed that the temperature range of thermal stability of nanocomposite is higher than the temperature range of
thermal stability of alginate polymer. This novel nanocomposite showed desirable antibacterial potential against the S. mutans
biofilm. As a result, it can be used as an antimicrobial and antibiofilm agent in various biomedical and dental fields.

1. Introduction

After using antibiotics in the middle of the twentieth cen-
tury, the challenge of antimicrobial resistance (AMR) has
steadily increased, so it seems that the continuation of this
trend until 2050 could lead to 10 million more deaths each
year worldwide [1]. In addition to mortality, economic prob-
lems (such as the annual cost of billions of dollars and the
loss of GDP) and psychosocial-social problems (such as
stigma and separation from society) can also affect different
communities [2].

In the oral environment, in particular, due to biofilm for-
mation and AMR resulting from it, we face infections that
can be challenging to eradicate with conventional antimicro-
bial agents [3, 4]. These biofilms can also transmit AMR
genes to other bacteria and thus release AMR [5]. S. mutans
is one of the most common oral bacteria resistant to various
antibiotics in oral infections [6, 7].

Introducing new antibacterial agents that can fight
against bacterial agents alone or with conventional antibi-
otics can be an effective step in combating AMR [8].
Recently, the use of nanomaterials has attracted the
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attention of researchers due to their unique properties in
many fields [9–11]. The advantages of nanocomposite mate-
rials compared to conventional composites include superior
thermal and mechanical properties, high surface-to-volume
ratio, and high flexibility without decreasing strength, as well
as desirable optical properties [12–14]. Both synthetically
and naturally, polymeric nanocomposites have a high clini-
cal application due to their availability and known proper-
ties. Alginate biopolymer has been used to produce various
types of nanocomposites due to its unique properties such
as low toxicity, conversion to various forms of fiber, film,
and hydrogel, and biocompatibility [11, 15].

Nanoparticles have antibacterial and anticancer activities
due to their shape, size, structure, and crystalline properties
and have been used for disinfection [16–18]. This nanopar-
ticle also showed good antimicrobial properties against oral
pathogens such as S. mutans, S. oralis, Lactobacillus acidoph-
ilus, Lactobacillus fermentum, and Candida albicans and
even performed better than chlorhexidine gluconate [19].
The use of silver compounds in nanocomposites can have
high antimicrobial and biocompatibility properties in
nanocomposites.

Kaolin is a mineral of layered phyllosilicate clay and a
common compound in soils and sediments [20, 21]. Due
to its cheapness, availability, and unique chemical and phys-
ical properties, this clay has been used in many health-
related matters such as the food industry, wastewater treat-
ment, and bleeding control [22–24]. Even though clay parti-
cles have no antibacterial properties, the intercalation of Ag
particles on them can kill adsorbed bacteria [25]. Therefore,
in the synthesis of nanocomposites, we used kaolin clay as
support and adsorbent due to the challenge of the possibility
of accumulating nanoparticles at the nanoscale in the poly-
mer matrix and reducing their antibacterial perfor-
mance [26].

The purpose of synthesis of this bio-nanocomposite is to
use nanotechnology to fight the dental biofilm. Therefore,
the present study was aimed at synthesizing and determin-
ing the optimal conditions for the antimicrobial activity of
alginate/kaolin/Ag bio-nanocomposite as a novel antibacte-
rial agent against S. mutans biofilm.

2. Materials and Methods

2.1. Synthesis of Alginate Biopolymer. To synthesize biopoly-
mer alginate, Azotobacter vinelandii with the characteristic
IBRC10786 was prepared and cultured from the Iranian bio-
logical resources center. The bacterial culture medium was
then incubated for 72 h at 29°C in a shaker incubator at
150 rpm. 100ml of the final culture medium containing the
bacteria was combined with 10ml of ethylenediaminetetra-
acetic acid (EDTA) (99%, Merck) 0.1M and 10ml of 1M
sodium chloride (99%, Merck) and centrifuged for 10min
at 5000 rpm. The supernatant was separated from the pre-
cipitated bacterial cells and stirred with isopropanol for
20min with a magnetic stirrer. After this step, the mixture
was passed through filter paper to separate the resulting sed-
iments. The precipitate was dried in an oven at 40°C for 72 h
to obtain a powdered alginate biopolymer [27].

2.2. Synthesis of Silver Nanoparticles. To synthesize silver
nanoparticles, solutions containing AgNO3 and trisodium
citrate dihydrate (C6H5Na3O7.2H2O) (99%, Merck) were
prepared. 50ml of 0.01M silver nitrate solution was boiled,
and then, 5ml of 1% trisodium citrate was added dropwise.
The resulting solution was stirred uniformly until homoge-
neous, and its color changed to pale yellow at 50°C. The
resulting solution was centrifuged three times for 15min
using a 5000 rpm centrifuge to remove impurities [28].

2.3. Synthesis of Nanocomposites. After creating Ag nanopar-
ticles and alginate biopolymer by the method described, kao-
lin clay was prepared commercially. Qulitek-4 software was
used to determine the best ratio of materials for synthesizing
nanocomposites with the highest antimicrobial activity, and
nine experiments were designed according to the Taguchi
method. For alginates, three concentrations of 60, 70, and
80mg/ml, for silver levels of 0.3, 0.6, and 0.9mg/ml, and
for kaolin concentrations of 1, 2, and 4mg/ml were used.

Separately, each component was stirred using distilled
water solvent to disperse completely. After this step, the pre-
pared solutions were combined using the in situ method. In
this method, silver nanoparticles and kaolin solution were
added simultaneously and dropwise to the alginate solution
and stirred for 60min and dispersed at room temperature
for 15min using an ultrasonic homogenizer. Finally, the
resulting solution was placed in an oven for one day at a
temperature of 65°C to evaporate the solvent to form nano-
composite powder sediments. After grinding in mortar as a
powder, nanocomposite sediments were used to investigate
its properties [29].

2.4. Antibacterial Activity. The antibacterial activity of algi-
nate/kaolin/Ag nanocomposite against S. mutans biofilm
was investigated. This bacterium (ATCC 35668) was pre-
pared from the Persian type culture collection in Iran. After
24 h of culture on the brain heart infusion agar medium, sin-
gle colonies of S. mutans were obtained. To form a bacterial
biofilm, the prepared bacterial suspension equivalent to 0.5
McFarland was added to a 96-well culture plate and incu-
bated at 37°C for 72h. The culture medium was changed
daily with fresh brain heart infusion containing 2% sucrose
and 1% mannose. After biofilm formation, it was washed
with PBS three times to remove planktonic. The synthesized
nanocomposites were then added to the wells according to
experiments designed by the Taguchi method, and the plate
was incubated for 24h at 37°C. The separated cells were then
collected from the well wall to measure the number of viable
cells in the biofilms. The remaining cells adhering to the well
wall were suspended in 1ml PBS buffer after three washes.
The resulting suspension was then homogenized using a
vortex for 2min. To perform the colony-forming unit
(CFU) test, the bacterial suspensions were diluted ten times
with serial dilution, then cultured on plates containing the
brain heart infusion agar, and incubated for 24 h at 37°C.
After heating, the number of colonies was counted, and their
mean was obtained for nine experiments. All experiments
had three replications.
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2.5. Characterization. The properties of alginate/kaolin/Ag
nanocomposites and their components were investigated
using different characterization methods. For this purpose,
Fourier transform infrared spectroscopy (FTIR) (Thermo
Company at RT/USA), ultraviolet-visible (UV-vis) spectro-
photometry (Shimadzu Company UV-160 A model/Japan),
X-ray diffraction (XRD) (Philips X ‘Pert (40 kV, 30mA)/
Netherlands), field emission scanning electron microscopy
(FESEM) (TESCAN Company, MIRA III model/Czech
Republic), energy dispersive X-ray spectroscopy (EDX)
(MIRA III model SAMX detector/France), X-ray surface ele-
mental mapping (Map) with SAMX detector (TESCAN
Company, MIRA II model/Czech Republic), transmission
electron microscope (TEM) (TEM Philips EM208S/Nether-
lands), and thermogravimetric analysis/differential scanning
calorimetry (TGA-DSC) (TA Company, Q600 model) were
used. By measuring the amount of X-ray scattering emitted
for each sample, different 2θ angles at specific intensities
are determined. By measuring the amount of X-ray scatter-
ing emitted for each sample, different angles 2θ at certain
intensities are determined. Finally, the X-ray diffraction
intensity curve is drawn in terms of angle 2θ at certain
angles of the peaks corresponding to the distances between
the crystal plates. From this method, the order of the crystal
structure of the samples can be determined, and then, the
size of the formed crystal can be determined using the
Debye-Scherrer relation. In this regard, D is the crystal size,
K is the crystal shape constant (0.9) close to number one, λ
is the size of the X-ray cathode lamp wavelength used, B is
the peak width at half the maximum height in terms of
radians, and θ is diffraction angle of scattered X-ray by
degree.

B = kλ/L cos θð Þ: ð1Þ

3. Results and Discussion

3.1. Antibacterial Activity. Nine experiments were designed
to determine the optimal conditions for synthesizing algi-
nate/kaolin/Ag nanocomposites with the highest antibacte-
rial activity based on the Taguchi method. The effects of
nanocomposites synthesized under different conditions on
the viability rate of S. mutans were evaluated (Table 1).
The results showed that the synthesized nanocomposites in
experiment 3 with 60mg/ml alginate, 0.9mg/ml kaolin,
and 4mg/ml Ag and experiment 5 with 70mg/ml alginate,
0.6mg/ml kaolin, and 4mg/ml Ag have the strongest anti-
bacterial activity against the S. mutans biofilm. In their pres-
ence, the bacterial viability is reduced to zero.

Previous studies have also shown that alginate-Ag nano-
composite can have effective activity against gram-positive
and gram-negative bacteria so that this effect increases with
increasing concentration of silver nanoparticles and decreas-
ing their size [30, 31]. Silver nanoparticles, due to their abil-
ity to interact with DNA and proteins containing
phosphorus and sulfur, the increase of membrane perme-
ability, and cell wall destruction, can cause the death of
microorganisms, while sodium alginate biopolymer has no
antibacterial properties [32]. It has also been shown that

kaolin alone cannot have a good antibacterial effect; how-
ever, modifying it with Ag nanoparticles increases the anti-
bacterial activity of nanoparticles [25].

It is important to note in the toxicity of Ag nanoparticles
[31]; the researchers reported that despite the high antibac-
terial and antibiofilm properties of Ag nanoparticles against
S. mutans at 200 ppm, almost these nanoparticles could kill
all fibroblast cells. However, due to their immobilization in
the polymer matrix, the use of these nanoparticles in the
form of polysaccharide nanocomposites cannot enter the
eukaryotic cells and therefore lacks cytotoxicity [33, 34].

Table 2 shows the effect of alginate, kaolin, and Ag fac-
tors on the viability rate of S. mutans bacteria. The results
showed that the alginate factor in the first level, kaolin in
the second level, and Ag in the third level had the greatest
effect on the viability rate of S. mutans bacteria.

The interaction of the factors on the viability rate of S.
mutans bacteria is shown in Table 3. In the third level, kaolin
and Ag showed the greatest interaction on the viability rate
of S. mutans bacteria as 27/85%. Alginate in the first level
and Ag in the third level had a significant interaction on
the viability rate of S. mutans bacteria as 12/36%. The lowest
interaction index was related to alginate in the first level and
kaolin in the third level (0.73%).

Analysis of variance of parameters affecting the viability
rate of S. mutans bacteria is shown in Table 4. The greatest
effect on the viability rate of S. mutans bacteria was related
to Ag with an effect of 76.29%, alginate (18.89%), and kaolin
(4.29%), respectively.

After analyzing the data and examining the effect of each
factor and their interaction, the optimal conditions for the
synthesis of alginate/kaolin/Ag nanocomposites with the
highest antibacterial activity were estimated (Table 5).
Accordingly, Ag showed the highest contribution, and kao-
lin showed the lowest contribution on the viability rate of
S. mutans bacteria, and alginate had an effect between these
two factors and close to kaolin. The first level was the most
suitable level for alginate factor, the second level for kaolin,
and the third level for Ag.

Table 1: Taguchi design of experiments and results of antibacterial
activity of alginate/kaolin/Ag nanocomposites.

Experiment
Alginate
(mg/ml)

Kaolin (mg/
ml)

Ag
(mg/
ml)

Bacterial survival
(CFU/ml)

60 70 80 0.3 0.6 0.9 1 2 4

1 60 0.3 1 2.11

2 60 0.6 2 0.58

3 60 0.9 4 0

4 70 0.3 2 1.49

5 70 0.6 4 0

6 70 0.9 1 2.35

7 80 0.3 4 1.13

8 80 0.6 1 2.71

9 80 0.9 2 1.84
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3.2. FTIR Analysis. The results of FTIR spectroscopy showed
the interaction and change of chemical composition of dif-
ferent components of the nanocomposite (Figure 1). In the
FTIR alginate spectrum (Figure 1(a), a wide absorption band
corresponding to OH at 3417 cm-1 and one absorption band
related to CH tension at 2924 cm-1 were observed. The peaks
at 1618 cm-1 and 1419 cm-1 were assigned to the symmetric
and asymmetric tensile vibrations of carboxylate anions,
respectively. The absorption band observed at 1033 cm-1

was attributed to the cyclic tension of COC ether [35].
In the kaolin FTIR diagram (Figure 1(b)), the peak seen

at 528 cm-1 due to vibrations is Al4+-O-Si, where Al4+ is in

an octagonal structure. The absorption band at 468 cm-1 is
related to the vibration bending of the O-Si-O bond. The
bands in the 3624 cm-1 and 3423 cm-1 positions are due to
the tensile vibrations of the OH groups located at the edges
of the kaolin plates. Also, the bands in 1637 cm-1 and
3624 cm-1 can be absorbed due to the vibration bending of
the H-O-H bond of water molecules [36].

In the FTIR spectrum of silver nanoparticles
(Figure 1(c)), the peaks observed in the positions of
624 cm-1, 1391 cm-1, and 1117 cm-1 are due to carbon bonds
and indicate the presence of impurity compounds absorbed
on the surface of Ag metal nanoparticles. Peaks were also
observed at 1591 cm-1 due to the tensile of the C=C bond
and at position 3413 cm-1 due to the tensile vibrations of
the O-H bond [37]. The peak of 523 cm-1 may be due to
the presence of a low amount of Ag-O nanoparticles [28].

Correlation of the component spectra with the FTIR
spectrum of the synthesized alginate/kaolin/Ag nanocom-
posite (Figure 1(d)) showed that the final nanocomposite
spectrum is composed of the resultant and overlapping spec-
tra of its components, which confirms the optimal formation
of the final nanocomposite.

3.3. UV-Vis Analysis. The ultraviolet-visible absorption spec-
trum of the synthesized nanocomposite and its components
was recorded in the range of 200 to 800nm (Figure 2). The
alginate biopolymer spectrum (Figure 2(a)) at about
276 nm showed a wide absorption band. In the UV spectrum
of kaolin clay, an absorption peak in the range of 260nm
was observed. A sharp absorption band at 208nm and two
wide absorption bands at 265 and 333nm were observed in
the UV absorption spectrum, indicating different sizes of
synthesized Ag nanoparticles (Figure 2(c)). To identify the
type of metal in the sample or to understand the changes
in the environment around the nanomaterials, the absorp-
tion wavelength of the material can be confirmed using vis-
ible spectroscopy in visible-ultraviolet rays [28]. The lack of
peak resolution in the UV absorption spectrum for the final
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Figure 1: Infrared Fourier transform spectra of alginate (a), kaolin
(b), Ag NPs (c), and alginate/kaolin/Ag nanocomposite (d).

Table 5: The optimum conditions for the synthesis of alginate/
kaolin/Ag nanocomposites with the highest antibacterial activity.

Factors Level Contribution

Alginate 1 -0.46

Kaolin 2 -0.26

Ag 3 -0.98

Total contribution from all
factors

-1.70

Current grand average of
performance

1.36

Bacterial survival at optimum
condition

-0.34

Table 4: The analysis of variance of factors affecting the survival
rate of Streptococcus mutans.

Factors DOF
Sum of
squares

Variance
F-ratio
(F)

Pure
sum

Percent
(%)

Alginate 2 1.52 0.76 144.93 1.51 18.89

Kaolin 2 0.35 0.18 33.72 0.34 4.29

Ag 2 6.09 3.05 582.33 6.08 76.29

DOF: degree of freedom.

Table 3: The interactions effects of studied factors on the survival
rate of Streptococcus mutans.

Interacting factor
pairs

Column
Severity index

(%)
Optimum
conditions

Kaolin×Ag 2 × 3 27.85 [3, 3]

Alginate×Ag 1 × 3 12.36 [1, 3]

Alginate×kaolin 1 × 2 0.73 [1, 3]

Table 2: The main effects of different levels of alginate, kaolin, and
Ag on the survival rate of Streptococcus mutans.

Factors Level 1 Level 2 Level 3

Alginate 0.90 1.28 1.89

Kaolin 1.58 1.10 1.40

Ag 2.39 1.30 0.38
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nanocomposite (Figure 2(d)) and the presence of a wide
absorption peak in the range above 249nm indicate the pro-
duction of absorption in different sizes.

3.4. XRD Analysis. X-ray diffraction analysis of alginate bio-
polymer (Figure 3(a)), kaolin (Figure 3(b)), Ag nanoparticles
(Figure 3(c)), and synthesized nanocomposites (Figure 3(d))
were performed to investigate the crystal behavior and fuzzy
identification of nanocomposite components. The X-ray dif-
fraction pattern of alginate biopolymer showed an amor-
phous structure for this material.

In the X-ray diffraction pattern of kaolin clay, the peak
corresponding to the diffraction plate (002) at 23.90 indi-
cated the presence of kaolin. Also, the 2θ angles, between
20 and 24, are related to the diffraction plates (002), (020),
(101), (021), and (111). Evidence of quartz can be seen from
the peak at 26.7 on the plate (111). The average crystal size
for the highest peak (111) was 27 nm [38]. In the X-ray dif-

fraction pattern of silver nanoparticles, the Miller indices of
the plates (hkl), (111), (200), (220), and (311) were calcu-
lated at angles 2θ, 39.0, 44.3, 64.6, and 77.2 degrees, respec-
tively [37]. Studying the X-ray diffraction pattern of Ag
nanoparticles confirmed that the synthesized particles are
silver nanoparticles with (FCC) structure [39]. The size of
kaolin and silver NPs was calculated to be 27 and 21nm
using the Scherer equation.

The mean crystal X-ray diffraction pattern obtained
from alginate/kaolin/Ag nanocomposite (Figure 3(d))
showed the reduction of intensity, removal of some peaks
or flattening, and their movement to the left or right in the
X-ray diffraction spectrum of the synthesized nanocompos-
ite compared to the X-ray diffraction pattern of components.
The main reason for this is the change in distances between
the crystal plates due to the mixing of components, which
showed the formation of nanocomposites.

3.5. SEM Analysis. To determine the morphology of the syn-
thesized nanocomposite and its components, scanning elec-
tron microscope images were taken from them, which are
shown in Figure 4. Figure 4(a) shows a network of alginate
biopolymer acting as the matrix in the final nanocomposite.
Also, the image of the microscopic structure of kaolin clay is
presented in Figure 4(b). The small size of silver nanoparti-
cles (Figure 4(c)) and their high surface to volume ratio
caused the accumulation of Ag nanoparticles. Also, scanning
electron microscopy images of Ag nanoparticles showed a
relatively spherical shape of these nanoparticles. Scanning
electron microscopy image of the final nanocomposite
shows the placement of nanoparticles on the matrix
(Figure 4(d)).

3.6. EDX Analysis. Energy dispersive X-ray spectroscopy
(EDX) analysis of alginate/kaolin/Ag nanocomposites
showed the presence of synthesized nanocomposite elements
(Figure 5). These elements include silver (with 22.32% by
mass, 4.92 At%), oxygen (with 34.84% by mass, 51.77
At%), aluminum (with 4.88% by mass, 4.30 At%), nitrogen
(with 0.94% by mass, 1.59 At%), silicon (with 6.94% by
mass, 5.88 At%), sodium (with 11.20% by mass, 11.58
At%), carbon (with 4.84% by mass, 9.57 At%), phosphorus
(with 9.98% by mass, 7.66 At%), and chlorine (with 4.06%
by mass, 2.72 At%).

3.7. Map Analysis. The X-ray surface elemental mapping
(map) for alginate/kaolin/Ag nanocomposites is shown in
Figure 6. The dispersion of oxygen, silver, sodium, phospho-
rus, silicon, aluminum, carbon, chlorine, and nitrogen and
the dispersion in the overall composition of the synthesized
nanocomposite uniformly confirmed the formation of the
nanocomposite.

3.8. TEM Analysis. The transmission electron microscope
(TEM) image taken from the synthesized nanocomposite
showed the shape and dispersion of the nanocomposite
components (Figure 7). The darker dots (nanoparticles) in
the image have a higher density where the lower density
material (background) is located. This shows the
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composition of the components and the formation of the
nanocomposite.

3.9. TGA-DTA Analysis. To investigate the heat degradation
behavior and thermal stability of the synthesized nanocom-
posite, the thermogravimetric analysis/differential scanning
calorimetry analysis curve of nanocomposite and its compo-
nents in the temperature range of 25 to 800°C under argon
gas with a temperature increase of 20°C per min was shown
in Figure 8.

Thermogravimetric analysis curve related to alginate
biopolymer (Figure 8(a)) showed low thermal stability and
high weight loss with increasing heat for this material. Also,
the thermogravimetric analysis curve related to kaolin clay
(Figure 8(b)) showed the ceramic nature, relatively high
thermal stability, and slight weight loss with increasing heat.

Thermogravimetric analysis curve related to alginate/
kaolin/Ag nanocomposite (Figure 8(c)) showed that the
thermal stability is great by adding silver and kaolin nano-
particles to the alginate biopolymer increased. This confirms
the formation of nanocomposites. In the nanocomposite
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differential scanning calorimetry analysis diagram, upward
peaks are endothermic and downward peaks are exothermic.
The thermogravimetric analysis diagram and nanocompos-

ite differential scanning calorimeter analysis curve
(Figure 8(c)) showed three temperature ranges. Weight loss
in the temperature range of 25 to 200°C is related to the loss
of moisture and absorbed water. The amount of polymer
affects the amount of water absorbed, effective in this tem-
perature range. In the temperature range of 200 to 400°C,
the polymer bonds are broken, and the polymer in the nano-
composite composition is decomposed, as shown by the
appearance of peaks in the DTA diagram. In the tempera-
ture range of 400 to 800°C, structural water bonded hydroxyl
groups and bonds in impurities are decomposed. Thermal
decomposition of nonpolymer components is also per-
formed in the third temperature range. Thermogravimetric
analysis curves for the samples of polymer alginate, kaolin,
and final nanocomposite indicated that the temperature
range of thermal stability of the nanocomposite is between
the temperature range of thermal stability of polymer
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alginate and the temperature range of thermal stability of
kaolin, which shows the effect of adding silver and kaolin
metal nanoparticles to the polymer base and modifying the
thermal stability.

4. Conclusions

The experiments showed that the new composition nano-
composite made of alginate/kaolin/Ag has a favorable anti-
microbial potential against S. mutans biofilm, according to
the results discussed. In such a way that in the right propor-
tion of components, the growth and viability of the bacte-
rium reach zero. These results concerning the issue of
microbial resistance can be very promising, and this nano-
composite can be considered for making various preventive
and therapeutic compounds.
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