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Utilization of various mineral admixtures in producing mortar decreases the porosity and capillarity, hence improves the
durability in opposition to water and competitive solutions. In this research work, Ground Granulated Blast Furnace Slag is
used to replace 30 percent, 60 percent, and 70% of ordinary Portland cement (OPC) (GGBEFS). Mechanical property
(compressive strength) and durability properties (permeability, porosity, and sorptivity) of high-performance concrete (HPC)
are tested. Water permeability of M85 is measured using three cell permeability apparatus. Compressive strength, porosity, and
sorptivity of the same mixes are also found. According to the test results of HPC, 30% replacement level of GGBES gives
higher compressive strength than 60% and 70% replacement levels of GGBFS. An equation is developed for permeability of
HPC based on mechanical strength and porosity. It is found that coefficient of permeability of water for HPC mixes ranges
from 5.1 x 10-11cm/sec to 7.8 x 10-11 cm/sec. It is concluded that 30% GGBFS used in HPC produces less porosity, less
permeability, and less sorptivity than compared to other replacement levels.

1. Introduction

Excessive performance concrete (HPC) is a brand new mag-
nificence of concrete that has evolved in latest decades. HPC
has a low water content and can attain sufficient rheological
properties by combining optimal granular packing with the
addition of excessive-range water lowering admixtures.
One primary high-quality best within the making of HPC
is the virtual elimination of voids within the concrete matrix
that generate deterioration. Therefore, HPC has a tendency
to exhibit superior residences such as superior energy, dura-

bility, and lengthy-time period balance. In competitive con-
texts, the long-term durability of concrete systems is always
a concern to consider. When it comes to structures that are
continually in contact with water, such as offshore systems,
parking decks, and dams, water penetration is the most
important aspect that determines the structure’s durability.
As a result, the permeability of the concrete and its pore
architecture are crucial to its long-term endurance. Supple-
mentary cementitious materials in high-performance con-
crete showed excellent performance in durability [1].
Chakraborty et al. [2] reported concrete developed with
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NANO GGBS produces a cohesive mix that reduces the per-
meability. Cheah and Chow [3] reported the replacement of
cement by NANO GGBS improved the capillary penetration
resistance of concrete significantly. Due to insufficient Ca
(OH)2 from cement hydration, NANO GGBS produces high
amount of secondary C-S-H and C-A-S-H bonds that
reduced both micro and macro pores in concrete. Therefore,
an optimum performance was observed in tests of porosity,
permeability, water absorption, and capillary absorption. It
was reported concrete with NANO GGBS exhibited high
resistance to ingression of chloride ions. Upon 80% or above
replacement of NANO GGBS, compressive strength was
greatly decreased [4]. Xie et al. [5] reported geo-polymer
concrete developed with high amount of NANO GGBS
exhibited decrease. Even after sulphate exposure during acid
evaluations, there was less mass loss and a larger residual
compressive electricity. As the amount of NANO GGBS in
the diet grows, so does the sulphate resistance. Based on
the findings of this literature review, it was discovered that
there has been little research done on high-performance
concrete made with large amounts of NANO GGBS. As a
result, the primary goal of this project is to investigate the
mechanical and durability properties of HPC for the desired
concrete mixes developed with high volumes of NANO
GGBS.

2. Experimental Studies

2.1. Ingredients of HPC. The cement used was Ordinary
Portland Cement (OPC) 53 Grade having a specific gravity
of 3.01. Effect of high volumes of NANO GGBS on strength
and durability of high-performance concrete uses locally
accessible river sand that conforms to grading zone II.

IS: 383-1970 [6] was used. The sand was screened at site
to remove deleterious materials. Locally available coarse
aggregate (12.5 mm) from quarry was used. Specific gravities
of the coarse and fine aggregates have a density of 2.71 and
2.65, respectively. GGBFS (Ground Granulated Blast Fur-
nace Slag) is a type of slag that comes from a blast furnace.
Astrra chemicals, a local manufacturer company in India,
was collected. Chemical properties were studied and com-
pared to cement since being replaced as shown in Table 1.
Super plasticizer GLENIUM B233, a modified polycar-
boxylic ether having pH >6, was used.

2.2. Mix Design and Methodology. Methodology as shown in
Figure 1 is followed in this research work. Concrete cubes of
size 15 cm’ were kept in curing for 28 days to test permeabil-
ity and sorption characteristics and also to determine
strength as explained in methodology. Mix design procedure
according to modified ACI method (Aitcin Method [7]) was
followed and proportion is as shown in Table 2. In this mix,
30%, 60%, and 70% cement turned into changed by floor
Granulated Blast Furnace Slag, retaining W/B ratio equal
and the mix design named as GGBFS-30%, GGBFS-60%,
and GGBFS-70% shown in Table 3. Formation of calcium
silicate hydrate gel is the most important parameter in the
concrete. The effect of maximum percentage of NANO
GGBS may lead to less compressive strength in concrete.
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TaBLE 1: Chemical properties of mineral admixture.

Compound Cement GGBFS
Sio, 23.1 35.34
AlLO, 4.51 11.59
Fe,O, 25 0.35
CaO 63.3 41.99
MgO 1.0 8.04
Alkalies 0.88 0.94
SO, 1.3 1.3
Loss on ignition 2.41 0.45

2.3. Mixing and Specimen Testing Procedure. Mixing was
performed in a concrete mixer gadget. Coarse aggregates,
great aggregates, cement, and admixtures have been intro-
duced to the mixer device and allowed to combine for 1
minute. Super-plasticizer was blended with the total water
and then 50 percentage of water added to the mixture
machine and allowed to mix for 2 minutes. Then, remaining
50 percentage of water poured in mixture machine and con-
tinued to mix for 2 minutes. Total mixing time was 5
minutes. Mixes were tried with varied mixing proportions
and finally the proportion which gives the best results in
terms of consistency and strength was selected. After de-
molding, the specimens had been saved for 28 days in curing
water tank before testing. Dried specimens were examined
for compressive electricity, porosity, permeability, and sorp-
tivity. Compressive electricity takes a look at turned into car-
ried out conforming to IS: 516 [8] on dice specimens of size
one hundred mm x a hundred mm x a hundred mm. Per-
meability of 150mm cube specimens and porosity of
100mm cube specimens were calculated according to IS:
3085-1965 [9] and ASTM C642 [10], respectively. Sorptivity
test of 100mm cube specimens was carried out based on
Taywood engineering (1993).

3. Results and Elobarations

3.1. Mechanical Strength. Compressive strength reduced
with an addition of high volume of NANO GGBS as shown
in Figure 2 and this reduction may be due to slower hydra-
tion rate and prolonged pozzolanic reaction [11]. Maximum
compressive strength of 96.4 MPa at 28 days is found for the
HPC specimens replaced with 30%. Table 4 shows the com-
pressive strength of HPC concreate of GGBFS in Normal
water curing. It is observed that performance of 30%
replacement is almost similar to 0% replacement. This is
due to the increase in the percentage of NANO GGBS in
the mix design. Quantity of NANO GGBS decreases the
quantity of gel formation.

3.2. Permeability. High volumes of NANO GGBS seriously
affect durability. Permeability reduction is predominant at
high NANO GGBS content [12]. As shown in Figure 3, per-
meability of HPC based on compressive power is expected.
In comparison to GGBES with a 30% substitution level, it
has a low permeability value (3.2 x 10" cm/sec). It is
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FIGURE 1: Methodology followed for testing HPC.

TaBLE 2: Mix proportions for M80 grade concrete (Aitcin Method)
were as mentioned.

W C FA CA SP
140 560 710.2 1075 5.7

TaBLE 3: Mix design details of NANO GGBS.

TaBLE 4: Compressive strength of HPC concrete at 28th day for
various dosages of GGBFS.

. . 2
Type of specimen 28th day compressive strength in N/mm

(NWC)
0% GGBFS 97.375
30% GGBFS 96.4
60% GGBFS 82.34
70% GGBFS 73.5

Replacement levels of NANO GGBS

Components GGBFS-30% GGBFS-60% GGBFS-70%
Water (lit.) 150.79 150.79 150.79
Cement (kg) 392 224 168
GGBFS (kg) 168 336 392
Coarse aggregate (kg) 1075 1075 1075
Fine aggregate (kg) 710.2 710.2 710.2
Super plasticizer (lit.) 5.503 5.503 5.503
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FIGURE 2: Variation of compressive strength at 28 days curing
period.

observed 30% NANO GGBS exhibited promising perfor-
mance amongst all concrete mixtures tested. NANO GGBS
refines capillaries and hence dense structure of micro-pores
is responsible for absorption.

ok = A(fck)® + B(fck) + C, where k and fck are the per-
meability (150 mm dice) and compressive energy (100 mm
die) of concrete, respectively. The coeflicients A, B, and C
are obtained from the regression analysis [13].

The relationship between permeability and compressive
power of concrete has been shown in parent four by way
of employing NWC for GGBFS alternate levels [14]. From
parent four, it was discovered that there was a significant
association between permeability and concrete compressive
strength, resulting in a regression coefficient (R?) of zero.
Permeability and compressive strength is shown in
Figure 4.

3.3. Porosity. HPC was tested for porosity with various min-
eral admixtures (GGBES). Table 5 shows the porosity results
for the specimens that were tested [15]. GGBS gives more
porous as this size is higher than the cement particles.
That the reason we used NANO GGBS for better strength
in the concrete. When compared to other replacements,
GGBFS with 30% replacement level has a low porosity
value (1.42 percent). To calculate the permeability of
HPC using the porosity data provided in Figure 5 is suffi-
ciently accurate [16].
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FIGURE 3: Variation of permeability at 28 days age.
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FIGURE 4: Permeability vs compressive strength.
TaBLE 5: Porosity of HPC.
Mix Porosity (%)
0% - GGBFS 1.65
30% - GGBFS 1.42
60% - GGBFS 2.08
70% - GGBES 2.47

k (cm /sec)
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FIGURE 5: k vs n for GGBFS replacement levels.

TABLE 6: Sorptivity of HPC.

Sorptivity (m/+/s) x 107

Mix 30 minutes 60 minutes
0% - GGBFS 1.68 1.95
30% - GGBEFS 1.99 2.33
60% - GGBEFS 2.13 2.6
70% - GGBES 2.17 2.8

TaBLE 7: Quality of concrete suggested by Taywood Engineering.

Concrete quality Sorptivity (m/s1/2) * 10*
Good 0.13
Acceptable 0.13 to 0.26

Poor >0.26

Correlation between permeability and porosity

k = A eP" where ‘k’ represents the concrete’s permeability
(150 mm cubes) and ‘n’” represents the concrete’s porosity
(100 mm cubes).

The coefficients A and B are the results of the regression
analysis. For GGBFS replacements, a study of permeability
vs porosity was conducted. Because of the significant associ-
ation between permeability and porosity of the concrete
shown in Figure 5, regression analysis yielded a correlation
coefficient (R?) of 0.939 [17].

3.4. Sorptivity. The test for sorptivity was conducted on
100 mm cubes [18]. Cubes were placed in a hot air oven at
a temperature of 105°C up to which constant mass is
obtained at an interval of time [19] and the weight was noted
[20]. Then, the specimen is immersed in water for different
interval of time (30 and 60 minutes), till the constant mass
was obtained and it was noted. After 28 days of curing, all
replacement levels of admixtures show less sorptivity as
given in Table 6. 30-GGBFS replacement shows less value
of sorptivity in 28days curing. The obtained sorptivity
values of HPC were in acceptable range according to Tay-
wood engineering limits as given in Table 7.
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4. Conclusions

NANO GGBS in high-performance concrete has exhibited
promising performance in durability characteristics at 30%
replacement compared to other concrete mixes. High volumes
of NANO GGBS seriously affect durability. Permeability
reduction is predominant at high NANO GGBS content. It
is observed 0% NANO GGBS exhibited lower performance
amongst all concrete mixtures tested. Compressive strength
reduces with an increment in NANO GGBS content for
cement replacement. However, 30% NANO GGBS concrete
mix has mere performance to ordinary concrete. Both porosity
and water absorption declined at 30% and increased at further
replacements. Sorptivity values were in acceptable range and
surface absorption increased due to NANO GGBS in concrete.
It is necessary to evaluate the impact of twofold blending on
HPC permeability and diffusivity.
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