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The current investigation is aimed at synthesizing nonhazardous, ecofriendly silver nanoparticles (AgNPs) from aqueous leaf
extract of Acer pentapomicum and at evaluating its antibacterial, antifungal, and antioxidant activities. In the present study,
AgNPs were synthesized at room temperature by mixing 7mL of 1mM AgNO3 with 1mL of A. pentapomicum leaf extract.
The synthesized AgNPs were then characterized via various techniques, including UV/visible spectrophotometry showing
maximum absorbance at 450 nm. Scanning electron microscopy (SEM) reveals a spherical shape of AgNPs with a size range of
19-25 nm, while the average crystalline nanosize of 9.5 nm and crystalline nature were confirmed by XRD. FTIR showing a
broad signal of 3394.71 which confirmed the coating of phenolic and alcoholic compounds on AgNPs, indicating their possible
role in the capping and stabilization of silver nanoparticles. EDX showed the elemental composition of the synthesized
nanoparticles. Our AgNPs were also found stable at a temperature of 55°C and pH range of 6-7 and in the presence of a salt
solution. Furthermore, the green synthesized AgNPs were found to exhibit potent antibacterial activity against various bacterial
species, with a maximum of 66% inhibition against Pseudomonas aeruginosa and 50.5% against E. coli and Xanthomonas
campestris. These nanoparticles also possess good antifungal activity against various fungal species. Regarding the antioxidant
activity, the AgNPs were found to possess a maximum of 93% antioxidant activity against DPPH at a concentration of 250μg/
mL and a minimum of 74% scavenging activity at 5μg/mL.

1. Introduction

Many pathogenic microbes are continuously gaining antibiotic
resistance, against which traditional antibiotics are not effective.
To combat this situation, nanoparticles are biogenically manu-
factured and effectively used as drug carriers. The nanoparticle
synthesis is a rising world widely because of their broad range of
utilization in various science fields such as biosensors, nanobio-
technology, energy conversion, and medicine [1, 2]

Nanobiotechnology is playing a significant role in the
production of new drugs formulations. A variety of chemi-
cal, physical, and biological methods is utilized for the pro-
duction of these nanoparticles. The chemical method
produces a larger quantity of metal nanoparticles in a very
less time, but this approach can also lead to nonecofriendly
bioproducts due to the use of chemicals which are toxic in
nature. Therefore, there is a need of a nontoxic and
environment-friendly fabricated procedure for the synthesis
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of metal nanoparticles that do not involve any toxic chemi-
cals or their by-products [3].

Silver nanoparticles are unique and important as com-
pared to other metal nanoparticles because of their unique
properties, chemical stability, good conductivity, and antifun-
gal, antibacterial, anti-inflammatory, and antiviral, potency.
They can be incorporated into food industry, superconducting
materials, composite fibers, cosmetic products, etc. [3, 4]. Sil-
ver nanoparticles are also utilized in water filtration, water
purification system, textile, and medical devices and in cancer
diagnosis and treatment [5]. The utilization of plants for the
synthesis of silver nanoparticles has drawn attention not only
due to its nonpathogenic, economical, and ecofriendly proto-
col but also because of its facile, single-step procedure and
for its potent applications in biomedical sciences.

Phytosynthesized silver nanoparticles exhibited remark-
able significant antioxidant and anticancer activity as com-
pared to other biosynthetic methods [6]. Bharathi and
Bhuvaneshwari reported the potential antioxidant activity
of silver nanoparticles using Cassia angustifolia flowers [7].
Bharathi et al. documented that the phytosynthesized
AgNPs from Cordia dichotoma fruit extract exhibited more
than 90% inhibitory activity against biofilm formed by S.
aureus and E. coli [8]. AgNPs synthesized from Annona
muricata and Eriobotrya japonica plant extracts could also
be an alternative for preventing inflammation by enhancing
autophagy and as a potent therapy for various cancer types
[9, 10].The genus Acer belongs to Aceraceae and is mainly
distributed in Asia and North America. Since ancient times,
many species of Acer family are utilized for various medici-
nal properties. Acer pentapomicum, commonly known as
Maple tree, is a small deciduous tree with a dark brownish
smooth bark. It belongs to the family Aceraceae, locally
known as Tarkana [10]. In our current study, we fabricated
the silver nanoparticles from aqueous leaf extract of Acer
pentapomicum and evaluated its antibacterial, anticandidal,
antifungal, and antioxidant activity. This work to the best
of our knowledge is the first report on the synthesis of silver
nanoparticles using Acer pentapomicum.

2. Material and Methods

2.1. Chemical and Reagents. All the chemicals such as silver
nitrate, DPPH, NaCl, Nutrient Agar media, Nutrient Broth
media, and methanol were obtained from Sigma-Aldrich
(St. Louis, USA).

2.2. Collection and Identification of Plant Extract. Acer pen-
tapomicum plant was collected from the Swat district,
located in the northern area of Pakistan. The identification
of the plant was done by Prof. Mehbob ur Rahman of “Post
Graduate Jehanzeb College Swat, Pakistan.”

2.3. Preparation of Leaf Extract. Acer pentapomicum leaves
were first shade dried and then ground to powder form.
About 15-20 grams of leaf powder was then boiled in
150mL of deionized water. This aqueous boiled extract was
then filtered, stored, and further utilized for silver nanopar-
ticle synthesis.

2.4. Biosynthesis of Silver Nanoparticles. One step facile
method of Banerjee [11] was followed for the synthesis of sil-
ver nanoparticles. 1mL of aqueous plant extract was mixed
with 7mL of 1mM silver-nitrate solution. The 1 : 7 reaction
mixture (1mL aqueous extract + 7mL AgNO3) was placed
on a shaker at 40°C for about an hour. An appearance of
brownish color of the reaction mixture suggested the com-
plete bioreduction of Ag+ ions to Ag nanoparticles, which
was then affirmed by UV-Vis spectroscopy after 24 hrs.

2.5. Stability Analysis of Biosynthesized AgNPs. The stability
of green-manufactured nanoparticles was carried out against
temperature, pH, and salt by following the method of Ateeq
et al. [12]. The AgNPs were isolated at different tempera-
tures (25-100°C) and pH ranges (3-8). 1mL of 1mM,
10mM, 100mM, and 1M each of sodium chloride solution
was added to the synthesized AgNPs to check its stability
against salt stress. All the isolated samples at different
stresses were then analyzed by UV-Vis spectroscopy.

2.6. Characterization of Biosynthesized Silver Nanoparticles.
Parameters involved in the characterization of green synthe-
sized silver nanoparticles provide a comprehensive view of
nanoparticle morphology, particle size, crystalline nature,
and potential functional groups responsible for the biore-
duction of silver ions to silver nanoparticles.

2.6.1. UV-Visible Spectrophotometry. The synthesis of silver
nanoparticles was observed by a UV-Vis spectrophotometer.
The absorbance spectrum of reaction mixture was acquired
by a U-2900 Spectrophotometer, HITACHI, Japan in the
range of 300-800nm.

2.6.2. Scanning Electron Microscope. The morphology and
size of the greenly synthesized AgNPs were evaluated by
SEM (JEOL Japan, JSM 5910) [11]. ImageJ software was
then used for the analysis of obtained SEM images.

2.6.3. Energy-Dispersive X-Ray (EDX). Energy-dispersive X-
ray (OXFORD, UK, Model No. INCA 200) was carried out
to confirm the presence of elemental silver in silver
nanoparticles.

2.6.4. Fourier Transform Infrared Spectroscopy. FTIR spec-
troscopy was performed for the identification of organic func-
tional groups present in the aqueous extract responsible for
the bioreduction of silver ions to AgNPs. The freeze-dried
samples of aqueous leaf extract and green-synthesized AgNPs
were blended with potassium bromide (KBR) and analyzed by
FTIR (SHIMADZU, IR-Prestige-21, Japan) in a spectral range
of 400-4000cm1 with a transmittance mode of 4 cm1 resolu-
tion as explained by Banerjee [11].

2.6.5. X-Ray Diffraction Analysis. The average crystalline size
and crystalline nature of our silver nanoparticles were inves-
tigated by X-ray diffraction pattern (JEOL, JDX-3532, Japan)
using copper Kα radiation of 1.05404A° operated at 30m
Ampere and current 40 kV voltage. The XRD pattern was
recorded at Bragg’s angle in a range of 10 theta to 70 theta
and Debye equation; i.e., D = 0:94βcosθwas used to deter-
mine the average crystalline size as explained by [11].
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2.7. Biological Activity. Antibacterial and anticandidal activity
against Bacillus subtilis, E. coli, P. aeruginosa, and X. campestris
was tested by the well diffusion method of Ali et al. [13]. Bacte-
rial and candida experiments were carried out in nutrient-agar
and nutrient-brothmedia. Briefly, 100μL of each microbial cul-
ture (1 × 106 CFU/mL) was spread evenly on media plates and
wells of 6mm in size were bored in the agar plates. AgNP solu-
tion in a concentration of 6 and 12μL was poured in the wells.

The petriplates were then incubated for 24hrs at 37°C, and the
percent inhibitory zone of growth was recorded.

Antifungal activity was investigated by following the
method of Ramdas et al. [14].

2.8. DPPH Radical Scavenging Assay. In vitro antioxidant
assay of the silver nanoparticles was investigated according
to the protocol of Mensor et al. [15]. In brief, 0.1mM

Figure 1: Color change of Acer pentapomicum-mediated AgNPs. The color of the solution changes to reddish brown after complete
nanoparticle synthesis.

Characterization

Antimicrobial activity

Scheme 1: Graphical abstract of green synthesis of silver nanoparticles.
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solution of DPPH was added to different concentrations of
AgNPs and to a reference standard gallic acid. The reaction
mixture was then incubated in the dark for 30 minutes.
Absorbance was then noted at 517nm. Percent antioxidant
activity was calculated by the following formula [16]:

AA = 100 Ao −Asð Þ
Ao , ð1Þ

where AA is the percent antioxidant activity, Ao is the
absorbance of control, and As is the absorbance of the
sample.

3. Results and Discussion

3.1. Visible Confirmation. Various concentrations of 1mM
silver nitrate solution were added separately to 1mL aqueous
leaf extract, which immediately initiated the silver nanoparti-
cle synthesis. A visible change from yellow to brown color of
the reaction mixture confirmed the synthesis of AgNPs [17].
After 24hrs, the color of the reaction mixture further changed
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Figure 3: UV-visible spectrum of AgNPs isolated at different
temperature Ranges.
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Figure 2: UV-Vis spectrum of A. pentapomicum-mediated silver
nanoparticles, depicting the highest peak at 1 : 7.
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to dark brownish which represents the complete bioreduction
of Ag+ ions to AgNPs (Figure 1 and Scheme 1) [18, 19].

3.2. UV-Vis Spectrophotometry. The nanoparticles were also
affirmed by UV-Vis spectrophotometry, which is the 1st
characterization tool utilized for the confirmation of our
green synthesized silver nanoparticles. Samples from various
combinations (1 : 1 to 1 : 16) of aqueous extract and 1mM
AgNO3 solution were observed for the synthesis of silver
nanoparticles. The nanoparticle solution was scanned from
300 to 700 nm. Figure 2 depicts the various combinations
of nanoparticle mixture showing absorption bands of differ-
ent intensities in a definite region which is because of the
surface plasmon-resonance of AgNPs. The 1 : 7 combination
of reaction mixture observed the highest surface plasmon
absorption band at 450nm, which is the absorbance range
of AgNPs. Similar surface plasmon resonance peak for
AgNPs was also reported [20, 21]. The 1 : 7 combination of
AgNPs was further stabilized and characterized for size, sur-
face morphology, functional group, and crystalline nature by
various techniques.

3.3. Stability Tests of Silver Nanoparticles. Greenly synthe-
sized AgNPs were also tested for their stability against vari-
ous stresses such as temperature, pH, and salt stress. The
AgNP synthesis was found highly dependent on the temper-
ature and pH of the reaction mixture. Figure 3 depicts that
as the temperature of the AgNP solution is increased from
25 to 55°C, the absorption band is also increased, suggesting

the enhanced synthesis of silver nanoparticles. Thus, it is
concluded from our findings that for large-scale production
of AgNPs, a temperature range of 35-55°C is required. This
finding is in full conformity with the findings of [22, 23]
on Tinospora cordifolia, Neem, and banana peel-based
AgNPs.

Previous studies reported that pH is another important
parameter which greatly affects the nanoparticle synthesis
and that the most favorable pH for plant-mediated silver
nanoparticles is neutral pH [24, 25]. Our results are in com-
plete accordance with these studies. The green synthesized
silver nanoparticles from A. pentapomicum leaf extract were
subjected to both acidic and basic pH stresses. As shown in
Figure 4, our findings reveal that with an increase in the
pH of AgNP solution, the absorption intensity also
increases. At pH6-7, the maximum intense absorption band
was recorded which suggests that this neutral pH is the opti-
mum pH for AgNP synthesis as it increases the bioavailabil-
ity of the functional group present in plant aqueous extract
to completely and efficiently reduce the Ag ions to AgNPs.
Our investigations are in correlation with the findings of
[26, 27]. Regarding the salt stress, our AgNPs were found
to be more stable at a 1mM salt stress (Figure 5).

3.4. Characterization of Silver Nanoparticles

3.4.1. Scanning Electron Microscopy (SEM). Greenly synthe-
sized AgNPs could be of various shapes such as pentagonal,
hexagonal, or spherical and of different sizes [28]. SEM

Figure 6: SEM of green synthesized AgNPs at different magnification an average particle size of 19-25 nm.
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analysis was performed to investigate the size and morphol-
ogy of our green manufactured AgNPs. The scanning elec-
tron micrographs (Figure 6) revealed the spherical
morphology of the AgNPs with the average size range of
19-25 nm. These results ascertain that the A. pentapomi-
cum-mediated AgNPs are in nanorange. The same results
were also reported by [29, 30].

3.4.2. Energy-Dispersive X-Ray (EDX). The EDX graph
(Figure 7) is showing absorption spectrum of AgNPs that
were prepared from naturally occurring bioactive compo-
nents present in A. pentapomicum aqueous extract. The
spectrum showed a strong absorption peak of 3.4 keV, which

is the typical absorption peak for AgNPs [17, 31]. Elemental
signals for oxygen and carbon were also observed in the
EDX spectrum which possibly represents the enzymes and
proteins present in our aqueous extract and involved in cap-
ping of silver nanoparticles [11, 32].

3.4.3. X-Ray Crystallography Diffraction (XRD). X-ray dif-
fraction was carried out to determine the crystalline nature
and average crystalline size of A. pentapomicum-mediated
AgNPs. The recorded XRD pattern displayed three major
peaks at 38.1°, 44.1°, and 64.15° which correspond to Bragg’s
reflection and is the characteristic diffraction pattern for sil-
ver. (Figure 8). Bragg’s reflection indicated the presence of
(111), (200), (220) sets of lattice planes known as miller indi-
ces. These miller indices represent the face-center cubic
structure of silver. Our reported results perfectly correspond
with the “International Centre of Diffraction Data,” ICCD-
card No. 04-0783 for the standard silver.

Debye–Scherrer equation was used to calculate the
average crystalline size of all the peaks at 2θ by determin-
ing the full width half maximum of the (111) (200), (220)
which came out to be 9.5 nm (Table 1). It is clearly dem-
onstrated from our findings that the silver salt had been
reduced by A. pentapomicum plant extract to AgNPs
under different reaction conditions. The presence of the
structural peaks and the average crystalline nanosize of
9.5 nm from XRD spectrum clearly indicate the purity
and nanocrystalline nature of our greenly manufactured
AgNPs. These findings are in accordance with the previous
reports [33, 34].

3.4.4. Fourier-Transform Infrared Spectroscopy (FTIR). The
functional groups of organic compounds present in A. pen-
tapomicum that facilitates the bioreduction of silver ions to

Table 1: Crystal sizes of silver nanoparticles (AgNPs) synthesized from A. pentapomicum leaves.

Sample
Peak position (miller indices)

Average crystalline size (nm)
38.1 (111) (nm) 44.1 (200) (nm) 64.15 (220) (nm)
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Figure 9: FTIR spectrum of plant extract.

500

(111)

(200)

(220)

450

400

350

300

250

200

150

100

50
20 30 40 50

2 Theta (degree)

In
te

ns
ity

60 70

Figure 8: X-ray diffraction spectrum of green-synthesized silver nanoparticles.

6 Journal of Nanomaterials



silver nanoparticles were identified by FTIR analysis. Vari-
ous shifts in the wave numbers of multiple absorption
bands were noted upon closer comparison of the FTIR
spectrum of our silver nanoparticles and plant extract
(Figures 9 and 10). The larger shift of 3394.71 cm-1 is asso-
ciated with phenolic compounds and OH- group of alco-
hols. Other shifts of 1249.87 cm-1 to 1273.01 cm-1,
1635.63 cm-1 to 1632.50 cm-1, 2062 cm-1 to 2059.97 cm-1,
2600 cm-1 to 2623.18 cm-1, and 2677.19 cm-1 to
2692.62 cm-1 that indicate the specific group of biocompo-
nents such as terpenoids and flavonoids were also noted.
These shifts showed that the functional groups associated
with these bands were mainly responsible for the bioreduc-
tion and stabilization of the Ag+ ions to AgNPs [35, 36].

3.4.5. Antibacterial and Anticandidal Bioassay. The antibac-
terial activity of silver nanoparticles has widely been stud-
ied and is suggested as a good alternative of synthetic
antibiotics. The antibacterial potency of the silver nano-
particles is probably mediated by producing holes in the
cell wall of bacteria. Due to these holes, the cell content
of the bacteria is lost, and ultimately bacterial cell death
occurred [37]. Our greenly synthesized silver nanoparticles
from A. pentapomicum plant extract were found to possess
potent antibacterial activity against different gram positive,
gram-negative bacterial pathogens (Figure 11). The highest
growth inhibition of 66% at 2mg/well concentration was
recorded against P. aeruginosa, E. coli, and Xanthomonas
campestris exhibited 50.5% of growth inhibition at the
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same concentration. Our results reported that silver nano-
particles were effective inhibiting the growth of all tested
bacterial species. However, it was found out that gram
negative microbes were more susceptible to AgNPs than
the tested gram-positive B. subtilis and S. aureus [38,
39]. The strong antibacterial activity of our silver nanopar-
ticles against gram negative bacteria may be due to the
fact that gram negative bacteria have thin cell wall which
is easily to disrupt as compared to gram positive bacteria
which has rigid cell wall [40–42]. Sathiyaraj et al. also
reported the significant antibacterial activity against Bacil-
lus subtilis, Escherichia coli, and K. pneumoniae [43, 44].
Similar results of AgNPs against B. subtilis and E.coli were
also reported by Nandana et al. [39]. Candida albicans
also showed good sensitivity to silver nanoparticles.

3.4.6. Antifungal Bioassay. The antifungal activity of differ-
ent concentrations of greenly synthesized silver nanoparti-

cles were also tested against various fungal species such as
“A. niger, F. oxysporum, Penicillium chrysogenum, and Rhi-
zopus oryzae” (Figure 12). The nanocrystalline silver nano-
particles were found to be highly effective against A. niger
specie showing 25.6%, 32%, and 38.8% of growth reduction.
The second most susceptible fungal species to all concentra-
tion of silver nanoparticles was found to be Rhizopus oryzae
exhibiting 21, 23.7, and 35% growth inhibition. F. oxy-
sporum and Penicillium chrysogenum also showed sensitivity
to green synthesized AgNPs. Previous studies of T. cordifo-
lia-based AgNPs also reported the antifungal activity against
Fusarium oxysporum [45, 46]. Silver nanoparticles from Aloe
barbadensis leaf extract were found to possess fungicidal
activity against Aspergillus and Rhizopus spice [47–49], while
Thevetia peruviana-based AgNPs exhibited toxicity against
A. niger [50, 51].

3.5. Antioxidant Activity. The antioxidant activity of the A.
pentapomicum-mediated AgNPs was evaluated by utilizing
the DPPH-radical scavenging bioassay (Figure 13). Accord-
ing to our findings, these nanocrystals possess good
DPPH-radical scavenging activity at all different tested con-
centrations. The highest DPPH-radical scavenging activity
of 93% is noted at a higher concentration of 250μg/mL
while a minimum of 74% was noted at 5μg/mL. Our results
confirmed that A. pentapomicum-mediated AgNPs have the
ability to quench free DPPH radicals. Similar results of anti-
oxidant activity of green synthesized silver nanoparticles
were also reported by other authors [42, 48, 50].

4. Conclusion

To the best of our knowledge, this work is the first report on
single-step green synthesis of AgNPs using aqueous Acer
pentapomicum leaf extract. Silver nanoparticles were suc-
cessfully synthesized, characterized, and evaluated for vari-
ous biological activities. The results indicated an
encouraging antimicrobial and antioxidant efficacy of
AgNPs. Thus, the outcome of this work revealed that the
green synthesized AgNPs could be useful for various
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biomedical applications, specifically in the development of
effective antimicrobials against various antibiotics resistance
microbes.
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